Diamidophosphine as a Precursor of the Iminophosphonamidinate Ligand in the Yttrium Complex

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Diamidophosphine tBuP(NHMes)2(H2L) is synthesized by the treatment of tBuPCl2 with two equivalents of KNHMes (Mes = 2,4,6-Me3C6H2). The reaction of H2L with potassium hydride in THF (THF is tetrahydrofuran) affords the anionic form HL with the hydrogen atom migrating from nitrogen to phosphorus, which is confirmed by the 1H and 31P NMR data. The structure of the formed iminophosphonamidinate anion HL is determined by X-ray diffraction (XRD) in the crystalline phase of K[K(THF)2](tBuPH(NMes)2)2 · C7H8 (KHL). The reaction of KHL with yttrium chloride gives complex [Y(tBuPH(NMes)2)2Cl] ([Y(HL)2Cl]) in which, according to the XRD data, ligands HL are in the iminophosphonamidinate PH form. The 1H and 31P NMR spectra confirm that this structure of the complex exists in the solution.

Texto integral

Acesso é fechado

Sobre autores

A. Konokhova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: konch@niic.nsc.ru
Rússia, Novosibirsk

M. Afonin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: konch@niic.nsc.ru
Rússia, Novosibirsk

T. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: konch@niic.nsc.ru
Rússia, Novosibirsk

S. Konchenko

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: konch@niic.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Kissel, A.A. and Trifonov, A.A., INEOS OPEN, 2018, vol. 1, no. 1, p. 1.
  2. Trifonov, A.A., Coord. Chem. Rev., 2010, vol. 254, nos. 1–2, p. 1327.
  3. Collins, S., Coord. Chem. Rev., 2011, vol. 255, nos. 1–2, p. 118.
  4. Groom, C.R., Bruno, I.J., Lightfoot, M.P., et al., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2016, vol. 72, p. 171.
  5. Schumann, H., Winterfeld, J., Hemling, H., et al., Chem. Ber., 1995, vol. 128, no. 4, p. 395.
  6. Recknagel, A., Steiner, A., Noltemeyer, M., et al., J. Organomet. Chem., 1991, vol. 414, no. 3, p. 327.
  7. Liu, B., Li, L., Sun, G., et al., Macromolecules, 2014, vol. 47, no. 15, p. 4971.
  8. Liu, B., Sun, G., Li, S., et al., Organometallics, 2015, vol. 34, no. 16, p. 4063.
  9. Nekrasov, R.I., Peganova, T.A., Fedyanin, I.V., et al., Inorg. Chem., 2022, vol. 61, no. 40, p. 16081.
  10. Kalsin, A.M., Peganova, T.A., Sinopalnikova, I.S., et al., Dalton Trans., 2020, vol. 49, no. 5, p. 1473.
  11. Goswami, B., Feuerstein, T.J., Yadav, R., et al., Chem.-Eur. J., 2021, vol. 27, no. 61, p. 15110.
  12. Vrana, J., Jambor, R., Ruzicka, A., et al., Dalton Trans., 2015, vol. 44, no. 41, p. 4533.
  13. Kolodiazhnyi, O.I. and Prynada, N., Tetrahedron Lett., 2000, vol. 41, no. 41, p. 7997.
  14. Kolodiazhnyi, O.I. and Andrushko, N.V., Russ. J. Gen. Chem., 2001, vol. 71, p. 1819.
  15. Khisamov, R.M., Sukhikh, T.S., Konchenko, S.N., et al., Inorganics, 2022, vol. 10, no. 12, p. 263.
  16. Kormachev, V.V., Fedoseev, M.S., Preparativnaya khimiya fosfora (Preparative Chemistry of Phosphorus), Perm′: UrO RAN, 1992, p. 100.
  17. Sheldrick, G.M., Acta Crystallogr., Sect. A: Cryst. Adv., 2015, vol. 71, no. 1, p. 3.
  18. Sheldrick, G.M., Acta Crystallogr., Sect. C: Struct. Chem., 2015, vol. 71, no. 1, p. 3.
  19. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., et al., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339.
  20. Petrov, P.A., Smolentsev, A.I., Konchenko, S.N., et al., Polyhedron, 2017, vol. 129, no. 17, p. 60.
  21. Valdebenito, G., Parra-Melipan, S., Lopez, V., et al., Appl. Organomet. Chem., 2021, vol. 35, no. 11, p. 6382.
  22. Gongoll, M., Peitz, S., Muller, B.H., et al., Phosphorus. Sulfur. Silicon Relat. Elem., 2013, vol. 188, no. 12, p. 1845.
  23. Li, S., Cui, D., Li, D., et al., Organometallics, 2009, vol. 28, no. 16, p. 4814.
  24. Li, S., Miao, W., Tang, T., et al., Organometallics, 2008, vol. 27, no. 4, p. 718.
  25. Schumann, H., Winterfeld, J., Hemling, H., et al., Chem. Ber., 1995, vol. 128, no. 4, p. 395.
  26. Yang, Y., Lv, K., Wang, L., et al., Chem. Commun., 2010, vol. 46, no. 33, p. 6150.
  27. Sroor, F., Hrib, C., and Edelmann, F., Inorganics, 2015, vol. 3, no. 4, p. 429.
  28. Rufanov, K.A., Pru, N.K., and Sundermeyer, J., Dalton Trans., 2016, vol. 45, no. 4, p. 1525.
  29. Anga, S., Acharya, J., and Chandrasekhar, V., Org. Chem., 2021, vol. 86, no. 3, p. 2224.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Anionic ligands and their protonated forms (proligands) appearing in this work. In all cases, Ri are different or identical aliphatic, aromatic, or heterocyclic radicals.

Baixar (55KB)
3. Scheme 2. Synthesis of diamidophosphine H2L, its deprotonation with potassium hydride and synthesis of the [Y(HL)2Cl] complex.

Baixar (80KB)
4. Fig. 1. Structure of K[K(THF)2](tBuPH(NMes)2)2 × C7H8 (KHL): packing of chains of alternating HL anions and potassium cations in a crystal (a); structure of the structural block K[K(THF)2](tBuPH(NMes)2)2 (b). CH3 groups of mesityl fragments and hydrogen atoms at carbon atoms are not shown. The contacts of potassium ions with nitrogen atoms and the π system of aromatic cycles are shown in dotted lines.

Baixar (265KB)
5. Fig. 2. The structure of the molecule [Y(tBuPH(NMes)2)2Cl]([Y(HL)2Cl]). The CH3 groups of mesitylene fragments and hydrogen atoms at carbon atoms are not shown.

Baixar (107KB)

Declaração de direitos autorais © Российская академия наук, 2024