


Том 50, № 4 (2024)
Статьи
Синтез и строение комплексов Cd(II) c редокс-активными индофенольными лигандами
Аннотация
Осуществлен синтез аддуктов I, II и III комплексов Сd(II) с редокс-амфотерными 2,6-ди-(трет-бутил)-4-((2-гидроксифенил)имино)циклогекса-2,5-диеноновыми лигандами L1 и L2. Строение координированных комплексов I, II и III установлено с помощью РСА (CCDC № 1838319 (II), 1838310 (III) и подтверждено данными ЯМР 1Н, 13С, 113Cd (для комплексов I и III) и ИК-спектроскопии.



Влияние заместителей в пентафторбензоатном, 2,3,4,5- и 2,3,5,6-тетрафторбензоатных анионах на строение комплексов кадмия
Аннотация
Синтезированы новые 2,3,4,5-тетрафторбензоатные (6HТfb) и 2,3,5,6-тетрафторбензоатные (4Htfb) комплексы кадмия состава [Cd(6HТfb)(H2O)3]n · (6HТfb) · 2nH2O (I), [Cd3(Рhen)2(6HТfb)6] (II, Рhen = 1,10-фенантролин), [Cd2(Рhen)2(4Htfb)4]n · 2nH2O (III) и [Cd(Рhen)2(4Htfb)2] (IV). Анализ полученных нами результатов и литературных данных показал, что для формирования координационных полимеров со стопочной упаковкой чередующихся фторированных и нефторированных ароматических фрагментов неблагоприятным фактором является уменьшение количества фторных заместителей. Так, в случае 2,4,5-трифторбензоатного комплекса наблюдается формирование типичной “тривиальной” структуры биядерного комплекса кадмия с экранированным лигандами металлоостовом. Синтез 2,3,4,5- и 2,3,5,6-тетрафторбензоатных комплексов позволил зафиксировать пограничную ситуацию и показать, что на строение продуктов комплексообразования влияет не только количество, но и положение фторных заместителей. С использованием данных квантово-химических расчетов было показано, что для формирования координационных полимеров необходимо образование устойчивого в растворе молекулярного прекурсора со структурой “китайского фонарика”, а для формирования необычных “сплюснутых” биядерных комплексов с дополнительно координированными молекулами воды – образование двухмостиковых биядерных комплексов, способных переходить в конформацию с разблокированными координационно ненасыщенными металлоцентрами.



Изучение влияния структуры элиминируемого лиганда на скорость восстановления комплексов кобальта(III)
Аннотация
С помощью спектроскопии ЯМР in situ исследовано восстановление гетеролептических комплексов кобальта(III) с бипиридиновыми лигандами, различающихся структурой молекулы модельного лекарственного препарата. Показано, что природа элиминируемого в процессе восстановления лиганда оказывает существенное влияние на скорость данного восстановления, что указывает на необходимость подбора оптимального комплекса кобальта для редокс-активируемой доставки конкретного лекарственного препарата.



Диамидофосфин как прекурсор иминофосфонамидинатного лиганда в комплексе ИТТРИя
Аннотация
Диамидофосфин tBuP(NHMes)2 (H2L) синтезирован обработкой tBuPCl2 двумя эквивалентами KNHMes (Mes = 2,4,6-Me3C6H2). Взаимодействие H2L с гидридом калия в THF (THF = тетрагидрофуран) приводит к образованию анионной формы HL–, в которой атом водорода мигрирует от азота к фосфору, что подтверждают данные ЯМР 1H и 31P. Строение образующегося при этом иминофосфонамидинатного аниона HL– установлено методом рентгеноструктурного анализа в кристаллической фазе K[K(THF)2](tBuPH(NMes)2)2 ∙ C7H8 (KHL). Взаимодействием KHL с хлоридом иттрия получен комплекс [Y(tBuPH(NMes)2)2Cl] ([Y(HL)2Cl]), в котором, по данным РСА, лиганды HL– присутствуют в иминофосфонамидинатной PH-форме. Спектры ЯМР 1H и 31P подтверждают такое строение комплекса в растворе.



Синтез, парообразование и термодинамические характеристики перфтортетрабензоата димолибдена и перфторциклогексаноата серебра
Аннотация
Впервые синтезированы безводные перфтортетрабензоат димолибдена Мо2(ООСС6F5)4 (I) и перфторциклогексаноат серебра AgOOCC6F11 (II). Комплекс I получен реакцией перекарбоксилирования тетраацетата димолибдена пентафторбензойной кислотой. Соединение II получено из свежеприготовленного оксида серебра и перфторциклогексановой кислоты. Парообразование комплексов исследовали эффузионным методом Кнудсена с масс-спектральным анализом газовой фазы. Сублимация Мо2(ООСС6F5)4 протекает конгруэнтно. Найдены энтальпия сублимации и уравнение зависимости давления пара от температуры. Парообразование AgOOCC6F11 сопровождается полным термическим разложением с образованием Ag(тв) и, главным образом, молекул С6F12, С6F10, CO2. Найдены стандартные энтальпии реакции термического разложения ΔrHo298.15(5) = (439.5 ± 16.4) кДж/моль, ΔrНо298.15(6) = (325.2 ± 14.0) кДж/моль и образования комплекса серебра ΔfHo298.15 (AgOOCC6F11, к) = –(2751.0 ± 24.4) кДж/моль.



Синтез и строение аренсульфонатов алкилтрифенилфосфония
Аннотация
Взаимодействием эквимолярных количеств бромида алкилтрифенилфосфония с аренсульфоновыми кислотами в водно-ацетоновом растворе синтезированы аренсульфонаты алкилтрифенилфосфония [Ph3PCH2ОMe][OSO2C6H3(OH-4)(COOH-3)] (I), [Ph3PCH2СN][OSO2C6H4(COOH)-2] (II), [Ph3PCH2C(O)Me][OSO2С6H4(COOH-2] (III), [Ph3PCH2C(O)Me][OSO2Naft-1] (IV). По данным РСА кристаллы соединений I–IV имеют ионную структуру с тетраэдрическими катионами алкилтрифенилфосфония (P–С – 1.7820(19)–1.8330(20) Å, CPC – 105.37(10)–112.09(12)°) и аренсульфонатными анионами. В кристалле I наблюдаются водородные связи (S=O···H–OC(O) – 1.87 Å), посредством которых аренсульфонатные анионы структурируются в цепочки. Структурная организация кристаллов I–IV формируется в основном за счет множества слабых водородных связей между катионами и анионами, например, S=O···H–CAr (2.29–2.70 Å), C=O∙∙∙H–C (2.48 и 2.59 Å), N∙∙∙H–C (2.62–2.68 Å).


