Palladium Complexes of Pyrimidine-2-thiones: Synthesis, Structures, and Properties
- Autores: Kuzovlev A.S.1,2, Gordeeva N.A.3, Pastukhova Z.Y.3, Chernyshev V.V.1,4, Buzanov G.A.5, Dunaev S.F.1, Bruk L.G.3
- 
							Afiliações: 
							- Moscow State University
- Tyumen State University
- Russian Technological University (MIREA)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Edição: Volume 50, Nº 1 (2024)
- Páginas: 53-61
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667628
- DOI: https://doi.org/10.31857/S0132344X24010063
- EDN: https://elibrary.ru/OSLSPO
- ID: 667628
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Complexes [PdL2Cl2] (I) and [PdL2Вr2] (II) (L is 5-acetyl-6-methyl-4-(3-nitrophenyl)-1,2,3,4-tetrahydropyrimidine-2-thione) are synthesized and characterized by spectral methods (1Н, 13С NMR and IR spectroscopy). The crystal structure of complex I is determined (CIF file ССDС no. 2233053) in which the palladium atom is coordinated by two halide ions and two sulfur atoms of two ligands L in a distorted square planar geometry. The catalytic activity of the synthesized palladium(II) complexes in the model epoxidation of allyl alcohol is estimated in comparison with the catalytic activity of the corresponding palladium halides and titanium-containing zeolite TS-1.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Kuzovlev
Moscow State University; Tyumen State University
							Autor responsável pela correspondência
							Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Tyumen						
N. Gordeeva
Russian Technological University (MIREA)
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Zh. Pastukhova
Russian Technological University (MIREA)
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
V. Chernyshev
Moscow State University; Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
G. Buzanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
S. Dunaev
Moscow State University
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
L. Bruk
Russian Technological University (MIREA)
														Email: a.s.kuzovlev@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Kokina T.E., Glinskaya L. A., Sheludyakova L. A. et al. // Polyhedron. 2019. V. 163. P. 121.
- Moro A.C., Mauro A. E., Netto A. V.G. et al. // Eur. J. Med. Chem. 2009. V. 44. № 11. P. 4611.
- Nadeem S., Bolte M., Ahmad S. et al. // Inorg. Chim. Acta. 2010. V. 363. № 13. P. 3261.
- Rohini G., Ramaiah K., Aneesrahman K. N. et al. // Appl. Organomet. Chem. 2018. V. 32. № 12. P. 4567.
- Da Silva D. L., Reis F. S., Muniz D. R. et al. // Bioorg. Med. Chem. 2012. V. 20. № 8. P. 2645.
- Sashidhara K.V., Avula S. R., Sharma K. et al. // Eur. J. Med. Chem. 2013. V. 60. P. 120.
- Kuzovlev A.S., Volkova D. A., Parfenova I. V. et al. // New J. Chem. 2020. V. 44. P. 7865.
- Kappe C.O. // Eur. J. Med. Chem. 2000. V. 35. P. 1043.
- Sati B. E., Sati H., Nargund L. V.G et al. // Orient. J. Chem. 2012. V. 28. № 2. P. 1055.
- Chikhale R., Thorat S., Pant A. et al. // Bioorg. Med. Chem. 2015. V. 23. № 20. P. 6689.
- Sawant R.L., Sarode V. I., Jadha G. D. et al. // Med. Chem. Res. 2011. V. 21. № 8. P. 1825.
- Kwon O.W., Moon E., Chari M. A. et al. // Bioorg. Med. Chem. Lett. 2012. V. 22. № 16. Р. 5199.
- Shkurko O.P., Tolstikova T. G., Sedova V. F. // Rus. Chem. Rev. 2016. V. 85. № 10. P. 1056.
- Lauro G., Strocchia M., Terracciano S. et al. // Eur. J. Med. Chem. 2014. V. 80. P. 407.
- Crespo A., El Maatougui A., Biagini P. et al. // ACS Med. Chem. Lett. 2013. V. 4. № 11. P. 1031.
- Cepeda V., Fuertes M., Castilla J. et al. // Anti-Cancer Agents Med. Chem. 2007. V. 7. № 1. P. 3.
- Alderden R.A., Hall M. D., Hambley T. W. // J. Chem. Ed. 2006. V. 83. № 5. P. 728.
- Kartalou, M. Essigmann, J.M. // Mut. Res. 2001. V. 478. № 1–2. Р. 23.
- De Moura T. R., Cavalcanti S. L., Sakamoto-Hojo E.T. et al. // Transition Met. Chem. 2017. V. 42. № 6. P. 565.
- Dorairaj D.P., Haribabu J., Hsu S. C.N. et al. // Inorg. Chem. Commun. 2021. V. 134. P. 109018.
- Dorairaj D.P., Haribabu J., Chithravel V. et al. // Res. Chem. 2021. V. 3. P. 100157.
- Bharati P., Bharti A., Nath P. et al. // Inorg. Chim. Acta. 2016. V. 443. P. 160.
- Pearson R.G. // Phys. Inorg. Chem. 1963. V.85. № 22. P. 3533.
- Ruan J., Xiao J. // Acc. Chem. Res. 2011. V. 44. № 8. Р. 614.
- Sherwood J., Clark J. H., Fairlamb I. J.S. et al. // Green Chem. 2019. V. 21. P. 2164.
- Gadge S.T., Bhanage B. M. // RSC Adv. 2014. V. 4. P. 10367.
- Wang D., Weinstein A. B., White P. B. et al. // Chem. Rev. 2018. V. 118. № 5. P. 2636.
- Engle K.M., Yu J-Q. // J. Org. Chem. 2013. V. 78. P. 8927.
- Zhang L-M., Li H-Y., Li H-X. et al. // Inorg. Chem. 2017. V. 56. P. 11230.
- Jia W-G., Gao L-L, Wang Z-B. et al. // RSC Adv. 2017. V. 7. P. 42792.
- Chernyshev V.V. // Russ. Chem. Bull. Int. Ed. 2001. V. 50. P. 2273.
- Cerny R. // Crystals. 2017. V. 7. P. 142.
- Hughes C.E., Reddy G. N.M., Masiero S. et al. // Chem. Sci. 2017. V. 8. P. 3971.
- Pawley G.S. // J. Appl. Crystallogr. 1981. V. 14. P. 357.
- Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
- Zhukov S.G., Chernyshev V. V., Babaev E. V. et al. // Z. Kristallogr. 2001. V. 216. P. 5.
- Zlokazov V.B., Chernyshev V. V. // J. Appl. Crystallogr. 1992. V. 25. P. 447.
- Andreev S.V., Zverev S. A., Zamilatskov I. A. et al. // Acta Crystallorg. C. 2017. V. 73. P. 47.
- Erzina D.R., Zamilatskov I.A, Stanetskaya N. M. et al. // Eur. J. Org. Chem. 2019. P. 1508.
- Spek A.L. // Acta Crystallorg. D. 2009. V. 65. P. 148.
- Pastukhova Zh. Yu., Levitin V. V., Katsman E. A. et al. // Kinet. Catal. 2021. V. 62. № 5. P. 551.
- Groom C.R., Allen F. H. // Angew. Chem. 2014. V. 53. P. 662.
- Bordiga S., Bonina F., Damin A. et al. // Phys. Chem. Chem. Phys. 2007. V. 9. № 35. P. 4854.
- Taramasso M., Perego G., Notari B. US Pat. № 4410501. 1983.
- Flaningen E.M., Bennett J. M., Grose R. W. et al. // Nature. 1978. V. 271. P. 512.
- Lane B.S., Burgess K. // Chem. Rev. 2003. V. 103. P. 2457.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





