Complexes R₂Sn(IV)L with Tridentate O,N,O΄-Donor Schiff Bases: Photophysical Properties and Biological Activity
- Autores: Burmistrova D.A.1, Pomortseva N.P.1, Pashaeva K.D.1, Polovinkina M.P.1, Al’myasheva N.R.2, Dolgushin F.M.3, Tselukovskaya E.D.4, Anan’ev I.V.3, Demidov O.P.5, Poddel’skii A.I.6, Berberova N.T.1, Eremenko I.L.3, Smolyaninov I.V.1
- 
							Afiliações: 
							- Astrakhan State Technical University
- Gause Institute of New Antibiotics, Russian Academy of Medical Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research University Higher School of Economics
- North Caucasian Federal University
- Institute of Inorganic Chemistry, University of Tubingen
 
- Edição: Volume 50, Nº 11 (2024)
- Páginas: 753-772
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667648
- DOI: https://doi.org/10.31857/S0132344X24110026
- EDN: https://elibrary.ru/LMZHAR
- ID: 667648
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
New tin(IV) complexes (Ln)SnR2 (R = n-Bu (I, II), t-Bu (III–V), and Ph (VI)) with O,N,O΄-donor Schiff bases are synthesized. The molecular structures of compounds I and IV in the crystalline state are determined by XRD (CIF files CCDC nos. 2309864 (I) and 2309422 (IV)). The photophysical properties of the complexes are studied in comparison with the previously synthesized compounds containing phenyl or ethyl hydrocarbon groups at the tin atom. All compounds luminesce in chloroform: the emission bands are observed in the range from 580 to 638 nm. Both the groups at the tin atom and nature of the substituents in Schiff bases significantly affect the relative quantum yield. The anti/prooxidant activity of (Ln)SnR2 in the reactions with the ABTS (2,2΄-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) radical cation and superoxide radical anion, in the oxidative DNA damage, and during lipid peroxidation in vitro is studied. A weak antibacterial activity against the bacterial strains Staphylococcus aureus ANCC 6538 and E. faecium ATCC 3576 are observed for some compounds. The in vitro antiproliferative properties for a number of the complexes are studied for the HTC-116 and А-549 cancer cell lines. The coordination of the organometallic fragment with the O,N,O΄-tridentate ligands is found to induce a pronounced decrease in the cytotoxicity of the complexes.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Burmistrova
Astrakhan State Technical University
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Astrakhan						
N. Pomortseva
Astrakhan State Technical University
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Astrakhan						
K. Pashaeva
Astrakhan State Technical University
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Astrakhan						
M. Polovinkina
Astrakhan State Technical University
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Astrakhan						
N. Al’myasheva
Gause Institute of New Antibiotics, Russian Academy of Medical Sciences
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
F. Dolgushin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
E. Tselukovskaya
National Research University Higher School of Economics
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
I. Anan’ev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
O. Demidov
North Caucasian Federal University
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Stavropol						
A. Poddel’skii
Institute of Inorganic Chemistry, University of Tubingen
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Alemanha, 							Tubingen						
N. Berberova
Astrakhan State Technical University
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Astrakhan						
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
I. Smolyaninov
Astrakhan State Technical University
							Autor responsável pela correspondência
							Email: ivsmolyaninov@gmail.com
				                					                																			                												                	Rússia, 							Astrakhan						
Bibliografia
- Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
- Piskunov A.V., Trofimova O.Yu., Piskunova M.S. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 138. https://doi.org/10.1134/S1070328418020082
- Baryshnikova S.V., Bellan E.V., Poddel’skii A.I. et al. // Dokl. Chem. 2017. V. 474. P. 101. https://doi.org/10.1134/S0012500817050019
- Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. P. 5230. https://doi.org/10.1002/ejic.201600885
- Ilyakina E.V., Poddel’sky A.I., Fukin G.K. et al. // Inorg. Chem. 2013. V. 52. P. 5284. https://doi.org/10.1021/ic400713p
- Piskunov A.V., Trofimova O.Yu., Fukin G.K. et al. // Dalton Trans. 2012. V. 41. P. 10970–10979. https://doi.org/10.1039/C2DT30656E
- Chegerev M.G., Piskunov A.V. // Russ. J. Coord. Chem. 2018. V. 44. № 4. Р. 258. https://doi.org/10.1134/S1070328418040036
- Piskunov A.V., Piskunova M.S., Chegerev M.G. // Russ. Chem. Bull. 2014. V. 63. № 4. P. 912. https://doi.org/10.1007/s11172-014-0527-5
- Piskunov A.V., Chegerev M.G., Fukin G.K. // J. Organomet. Chem. 2016. V. 803. P. 51. https://doi.org/10.1016/j.jorganchem.2015.12.012
- Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. P. 1087. https://doi.org/10.1002/ejic.201701361
- Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. e202300540. https://doi.org/10.1002/ejic.202300540
- Banti C.N., Hadjikakoua S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
- Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/C5CS00132C
- Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermed. 2021. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
- Yusof E.N.M., Ravoof T.B.S.A., Page A.J. // Polyhedron. 2021. V. 198. P. 115069. https://doi.org/10.1016/j.poly.2021.115069
- Krylova I.V., Labutskaya L.D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/d3nj01993d
- Sánchez-Vergara M.E., Hamui L., Gómez E. et al. // Polymers. 2021. V. 13. P. 1023. https://doi.org/10.3390/polym13071023
- Sánchez-Vergara M. E., Gómez E., Dircio E. T. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5255. https://doi.org/10.3390/ijms24065255
- Cantón-Díaz A.M., Muñoz-Flores B.M., Moggio I. et al. // New J. Chem. 2018. V. 42. P. 14586. https://doi.org/10.1039/C8NJ02998A
- Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
- Jiménez-Pérez V.M., García-López M.C., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2015. V. 3. P. 5731. https://doi.org/10.1039/C5TB00717H
- López-Espejel M., Gómez-Treviño A., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2021. V. 9. P. 7698. https://doi.org/10.1039/d1tb01405f
- Sahu G., Patra S.A., Pattanayak P.D. et al. // Chem. Commun. 2023. V. 59. P. 10188. https://doi.org/10.1039/D3CC01953E
- Khan H.Y., Maurya S.K., Siddique H.R. et al. // ACS Omega. 2020. V. 5. P. 15218. https://doi.org/10.1021/acsomega.0c01206
- Khatkar P., Asija S. // Phosphorus Sulfur Silicon Relat. Elem. 2017. V. 192. P. 446. https://doi.org/10.1080/10426507.2016.1248762
- Jiang W., Qin Q., Xiao X. et al. // J. Inorg. Biochem. 2022. V. 232. P. 111808. https://doi.org/10.1016/j.jinorgbio.2022.111808
- Antonenko T.A., Shpakovsky D.B., Vorobyov M.A., et al. // Appl. Organometal. Chem. 2018. V. 32. Art. e4381. https://doi.org/10.1002/aoc.4381
- Nikitin E., Mironova E., Shpakovsky D. et al. // Molecules. 2022. V. 27. P. 8359. https://doi.org/10.3390/molecules27238359
- Antonenko A., Gracheva Y.A., Shpakovsky D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 2024. https://doi.org/10.3390/ijms24032024
- Smolyaninov I.V., Burmistrova D.A., Pomortseva et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 124. https://doi.org/10.1134/S1070328423700446
- Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Molecules. 2022. V. 27. P. 8216. https://doi.org/10.3390/molecules27238216
- Gordon A.J., Ford R.A., The chemistґs companion. New York: A Wiley interscience publication, 1972. 541 p.
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. Third Edition. New York: Springer, 2006. 673 p.
- Re R., Pellergrini N., Proteggente A. et al. // Free Radic. Biol. Med. 1999. V. 26. P. 1231. https://doi.org/10.1016/S0891-5849(98)00315-3
- Sadeer N.B., Montesano D., Albrizio S. et al. // Antioxidants. 2020. V. 9. P. 709. https://doi.org/10.3390/antiox9080709
- Stroev E.N., Makarova V.G. Praktikum po biologicheskoi khimii (Laboratory Works in Biological Chemistry). Moscow: Vysshaya shkola, 1986.
- Zhao F., Liu Z.-Q. // J. Phys. Org. Chem. 2009. V. 22. P. 791. https://doi.org/10.1002/poc.1517
- CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standards, 10th ed. CLSI document M07-A10, Wayne, PA, Clinical and Laboratory Standards Institute, 2015.
- CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015.
- Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc., 1997.
- Sheldrick G.M. // Acta Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2016.
- Perdew J., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
- Carlo A., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/10.1063/1.478522
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999. https://doi.org/10.1021/cr9904009
- Basu S., Masharing C., Das B. // Heteroat. Chem. 2012. V. 23. P. 457. https://doi.org/10.1002/hc.21037
- Basu S., Gupta G., Das B. et al. // J. Organomet. Chem. 2010. V. 695. P. 2098. https://doi.org/10.1016/j.jorganchem.2010.05.026
- Farfan N., Mancilla T., Santillan R. et al. // J. Organomet. Chem. 2004. V. 689. P. 3481. https://doi.org/10.1016/j.jorganchem.2004.07.053
- Tan Y.-X., Zhang Zh.-J, Liu Y. et al. // J. Mol. Struct. 2017. V. 1149. P. 874. https://doi.org/10.1016/j.molstruc.2017.08.058
- Garcia-Lopez M.C., Munoz-Flores B.M., Jimenez-Perez V.M. et al. // Dyes Pigm. 2014. V. 106. P. 188. https://doi.org/10.1016/j.dyepig.2014.02.021
- Beltran H. I., Damian-Zea C., Hernandez-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
- Gonzalez-Hernandez A., Barba V. // Inorg. Chim. Acta. 2018. V. 483. P. 284. https://doi.org/10.1016/j.ica.2018.08.026
- Vinayak R., Dey D., Ghosh D. et al. // Appl. Organomet. Chem. 2018, V. 32. Art. e4122. https://doi.org/10.1002/aoc.4122
- Budnikova Y.H., Dudkina Y.B., Kalinin A.A. et al. // Electrochim. Acta. 2021. V. 368. P. 137578. https://doi.org/10.1016/j.electacta.2020.137578
- Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 9. P. 8319. https://doi.org/10.3390/ijms24098319
- Petrosyan V.D., Milaeva E.R., Gracheva Yu.A. et al. // Applied Organomet. Chem. 2002. V. 16. P. 655. https://doi.org/10.1002/aoc.360
- Antonova N.A., Kolyada M.N., Osipova V.P. et al. // Doklady Chem. 2008. V. 419. P. 62. https://doi.org/10.1134/s0012500808030051
- Devi J., Yadav J., Singh N. // Res. Chem. Intermed. 2019. V. 45. P. 3943. https://doi.org/10.1007/s11164-019-03830-60
- Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermediates. 2022. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
- Devi J., Pachwania S., Yadav J. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2021. V. 196. P. 119. https://doi.org/10.1080/10426507.2020.1818749.
- Devi J., Yadav J. // Anti-Cancer Agents Med. Chem. 2018. V. 18. P. 335. https://doi.org/10.2174/1871520617666171106125114
- Banti C.N., Hadjikakou S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
- Milaeva E.R., Shpakovsky D.B., Gracheva Y.A. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1201. https://doi.org/10.1515/pac-2019-1209
- Beltran H. I., Damian-Zea C., Hernández-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
- Vinayak D. Dey D. Ghosh D. et al. // Appl. Organometal. Chem. 2017. V. Art. e4122. https://doi.org/10.1002/aoc.4122
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 












