Complexes R₂Sn(IV)L with Tridentate O,N,O΄-Donor Schiff Bases: Photophysical Properties and Biological Activity
- Авторлар: Burmistrova D.A.1, Pomortseva N.P.1, Pashaeva K.D.1, Polovinkina M.P.1, Al’myasheva N.R.2, Dolgushin F.M.3, Tselukovskaya E.D.4, Anan’ev I.V.3, Demidov O.P.5, Poddel’skii A.I.6, Berberova N.T.1, Eremenko I.L.3, Smolyaninov I.V.1
-
Мекемелер:
- Astrakhan State Technical University
- Gause Institute of New Antibiotics, Russian Academy of Medical Sciences
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- National Research University Higher School of Economics
- North Caucasian Federal University
- Institute of Inorganic Chemistry, University of Tubingen
- Шығарылым: Том 50, № 11 (2024)
- Беттер: 753-772
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/667648
- DOI: https://doi.org/10.31857/S0132344X24110026
- EDN: https://elibrary.ru/LMZHAR
- ID: 667648
Дәйексөз келтіру
Аннотация
New tin(IV) complexes (Ln)SnR2 (R = n-Bu (I, II), t-Bu (III–V), and Ph (VI)) with O,N,O΄-donor Schiff bases are synthesized. The molecular structures of compounds I and IV in the crystalline state are determined by XRD (CIF files CCDC nos. 2309864 (I) and 2309422 (IV)). The photophysical properties of the complexes are studied in comparison with the previously synthesized compounds containing phenyl or ethyl hydrocarbon groups at the tin atom. All compounds luminesce in chloroform: the emission bands are observed in the range from 580 to 638 nm. Both the groups at the tin atom and nature of the substituents in Schiff bases significantly affect the relative quantum yield. The anti/prooxidant activity of (Ln)SnR2 in the reactions with the ABTS (2,2΄-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) radical cation and superoxide radical anion, in the oxidative DNA damage, and during lipid peroxidation in vitro is studied. A weak antibacterial activity against the bacterial strains Staphylococcus aureus ANCC 6538 and E. faecium ATCC 3576 are observed for some compounds. The in vitro antiproliferative properties for a number of the complexes are studied for the HTC-116 and А-549 cancer cell lines. The coordination of the organometallic fragment with the O,N,O΄-tridentate ligands is found to induce a pronounced decrease in the cytotoxicity of the complexes.
Негізгі сөздер
Толық мәтін

Авторлар туралы
D. Burmistrova
Astrakhan State Technical University
Email: ivsmolyaninov@gmail.com
Ресей, Astrakhan
N. Pomortseva
Astrakhan State Technical University
Email: ivsmolyaninov@gmail.com
Ресей, Astrakhan
K. Pashaeva
Astrakhan State Technical University
Email: ivsmolyaninov@gmail.com
Ресей, Astrakhan
M. Polovinkina
Astrakhan State Technical University
Email: ivsmolyaninov@gmail.com
Ресей, Astrakhan
N. Al’myasheva
Gause Institute of New Antibiotics, Russian Academy of Medical Sciences
Email: ivsmolyaninov@gmail.com
Ресей, Moscow
F. Dolgushin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: ivsmolyaninov@gmail.com
Ресей, Moscow
E. Tselukovskaya
National Research University Higher School of Economics
Email: ivsmolyaninov@gmail.com
Ресей, Moscow
I. Anan’ev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: ivsmolyaninov@gmail.com
Ресей, Moscow
O. Demidov
North Caucasian Federal University
Email: ivsmolyaninov@gmail.com
Ресей, Stavropol
A. Poddel’skii
Institute of Inorganic Chemistry, University of Tubingen
Email: ivsmolyaninov@gmail.com
Германия, Tubingen
N. Berberova
Astrakhan State Technical University
Email: ivsmolyaninov@gmail.com
Ресей, Astrakhan
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: ivsmolyaninov@gmail.com
Ресей, Moscow
I. Smolyaninov
Astrakhan State Technical University
Хат алмасуға жауапты Автор.
Email: ivsmolyaninov@gmail.com
Ресей, Astrakhan
Әдебиет тізімі
- Baryshnikova S.V., Poddel’sky A.I., Bellan E.V. et al. // Inorg. Chem. 2020. V. 59. № 10. P. 6774. https://doi.org/10.1021/acs.inorgchem.9b03757
- Piskunov A.V., Trofimova O.Yu., Piskunova M.S. et al. // Russ. J. Coord. Chem. 2018. V. 44. P. 138. https://doi.org/10.1134/S1070328418020082
- Baryshnikova S.V., Bellan E.V., Poddel’skii A.I. et al. // Dokl. Chem. 2017. V. 474. P. 101. https://doi.org/10.1134/S0012500817050019
- Baryshnikova S.V., Bellan E.V., Poddel’sky A.I. et al. // Eur. J. Inorg. Chem. 2016. P. 5230. https://doi.org/10.1002/ejic.201600885
- Ilyakina E.V., Poddel’sky A.I., Fukin G.K. et al. // Inorg. Chem. 2013. V. 52. P. 5284. https://doi.org/10.1021/ic400713p
- Piskunov A.V., Trofimova O.Yu., Fukin G.K. et al. // Dalton Trans. 2012. V. 41. P. 10970–10979. https://doi.org/10.1039/C2DT30656E
- Chegerev M.G., Piskunov A.V. // Russ. J. Coord. Chem. 2018. V. 44. № 4. Р. 258. https://doi.org/10.1134/S1070328418040036
- Piskunov A.V., Piskunova M.S., Chegerev M.G. // Russ. Chem. Bull. 2014. V. 63. № 4. P. 912. https://doi.org/10.1007/s11172-014-0527-5
- Piskunov A.V., Chegerev M.G., Fukin G.K. // J. Organomet. Chem. 2016. V. 803. P. 51. https://doi.org/10.1016/j.jorganchem.2015.12.012
- Chegerev M.G., Piskunov A.V., Starikova A.A. et al. // Eur. J. Inorg. Chem. 2018. P. 1087. https://doi.org/10.1002/ejic.201701361
- Klimashevskaya A.V., Arsenyeva K.V., Maleeva A.V. et al. // Eur. J. Inorg. Chem. 2023. V. 26. e202300540. https://doi.org/10.1002/ejic.202300540
- Banti C.N., Hadjikakoua S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
- Zou T., Lum C.T., Lok C.-N. et al. // Chem. Soc. Rev. 2015. V. 44. P. 8786. https://doi.org/10.1039/C5CS00132C
- Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermed. 2021. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
- Yusof E.N.M., Ravoof T.B.S.A., Page A.J. // Polyhedron. 2021. V. 198. P. 115069. https://doi.org/10.1016/j.poly.2021.115069
- Krylova I.V., Labutskaya L.D., Markova M.O. et al. // New J. Chem. 2023. V. 47. P. 11890. https://doi.org/10.1039/d3nj01993d
- Sánchez-Vergara M.E., Hamui L., Gómez E. et al. // Polymers. 2021. V. 13. P. 1023. https://doi.org/10.3390/polym13071023
- Sánchez-Vergara M. E., Gómez E., Dircio E. T. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5255. https://doi.org/10.3390/ijms24065255
- Cantón-Díaz A.M., Muñoz-Flores B.M., Moggio I. et al. // New J. Chem. 2018. V. 42. P. 14586. https://doi.org/10.1039/C8NJ02998A
- Akbulatov A.F., Akyeva A.Y., Shangin P.G. et al. // Membranes. 2023. V. 13. P. 439. https://doi.org/10.3390/membranes13040439
- Jiménez-Pérez V.M., García-López M.C., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2015. V. 3. P. 5731. https://doi.org/10.1039/C5TB00717H
- López-Espejel M., Gómez-Treviño A., Muñoz-Flores B.M. et al. // J. Mater. Chem. B. 2021. V. 9. P. 7698. https://doi.org/10.1039/d1tb01405f
- Sahu G., Patra S.A., Pattanayak P.D. et al. // Chem. Commun. 2023. V. 59. P. 10188. https://doi.org/10.1039/D3CC01953E
- Khan H.Y., Maurya S.K., Siddique H.R. et al. // ACS Omega. 2020. V. 5. P. 15218. https://doi.org/10.1021/acsomega.0c01206
- Khatkar P., Asija S. // Phosphorus Sulfur Silicon Relat. Elem. 2017. V. 192. P. 446. https://doi.org/10.1080/10426507.2016.1248762
- Jiang W., Qin Q., Xiao X. et al. // J. Inorg. Biochem. 2022. V. 232. P. 111808. https://doi.org/10.1016/j.jinorgbio.2022.111808
- Antonenko T.A., Shpakovsky D.B., Vorobyov M.A., et al. // Appl. Organometal. Chem. 2018. V. 32. Art. e4381. https://doi.org/10.1002/aoc.4381
- Nikitin E., Mironova E., Shpakovsky D. et al. // Molecules. 2022. V. 27. P. 8359. https://doi.org/10.3390/molecules27238359
- Antonenko A., Gracheva Y.A., Shpakovsky D. et al. // Int. J. Mol. Sci. 2023. V. 24. P. 2024. https://doi.org/10.3390/ijms24032024
- Smolyaninov I.V., Burmistrova D.A., Pomortseva et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 124. https://doi.org/10.1134/S1070328423700446
- Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Molecules. 2022. V. 27. P. 8216. https://doi.org/10.3390/molecules27238216
- Gordon A.J., Ford R.A., The chemistґs companion. New York: A Wiley interscience publication, 1972. 541 p.
- Lakowicz J.R. Principles of Fluorescence Spectroscopy. Third Edition. New York: Springer, 2006. 673 p.
- Re R., Pellergrini N., Proteggente A. et al. // Free Radic. Biol. Med. 1999. V. 26. P. 1231. https://doi.org/10.1016/S0891-5849(98)00315-3
- Sadeer N.B., Montesano D., Albrizio S. et al. // Antioxidants. 2020. V. 9. P. 709. https://doi.org/10.3390/antiox9080709
- Stroev E.N., Makarova V.G. Praktikum po biologicheskoi khimii (Laboratory Works in Biological Chemistry). Moscow: Vysshaya shkola, 1986.
- Zhao F., Liu Z.-Q. // J. Phys. Org. Chem. 2009. V. 22. P. 791. https://doi.org/10.1002/poc.1517
- CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standards, 10th ed. CLSI document M07-A10, Wayne, PA, Clinical and Laboratory Standards Institute, 2015.
- CrysAlisPro. Version 1.171.38.41. Rigaku Oxford Diffraction, 2015.
- Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc., 1997.
- Sheldrick G.M. // Acta Crystallogr. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Frisch M.J., Trucks G.W., Schlegel H.B. Gaussian 09. Revision D.01. Wallingford (CT, USA): Gaussian, Inc., 2016.
- Perdew J., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
- Carlo A., Barone V. // J. Chem. Phys. 1999. V. 110. P. 6158. https://doi.org/10.1063/1.478522
- Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. V. 32. P. 1456. https://doi.org/10.1002/jcc.21759
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. P. 2999. https://doi.org/10.1021/cr9904009
- Basu S., Masharing C., Das B. // Heteroat. Chem. 2012. V. 23. P. 457. https://doi.org/10.1002/hc.21037
- Basu S., Gupta G., Das B. et al. // J. Organomet. Chem. 2010. V. 695. P. 2098. https://doi.org/10.1016/j.jorganchem.2010.05.026
- Farfan N., Mancilla T., Santillan R. et al. // J. Organomet. Chem. 2004. V. 689. P. 3481. https://doi.org/10.1016/j.jorganchem.2004.07.053
- Tan Y.-X., Zhang Zh.-J, Liu Y. et al. // J. Mol. Struct. 2017. V. 1149. P. 874. https://doi.org/10.1016/j.molstruc.2017.08.058
- Garcia-Lopez M.C., Munoz-Flores B.M., Jimenez-Perez V.M. et al. // Dyes Pigm. 2014. V. 106. P. 188. https://doi.org/10.1016/j.dyepig.2014.02.021
- Beltran H. I., Damian-Zea C., Hernandez-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
- Gonzalez-Hernandez A., Barba V. // Inorg. Chim. Acta. 2018. V. 483. P. 284. https://doi.org/10.1016/j.ica.2018.08.026
- Vinayak R., Dey D., Ghosh D. et al. // Appl. Organomet. Chem. 2018, V. 32. Art. e4122. https://doi.org/10.1002/aoc.4122
- Budnikova Y.H., Dudkina Y.B., Kalinin A.A. et al. // Electrochim. Acta. 2021. V. 368. P. 137578. https://doi.org/10.1016/j.electacta.2020.137578
- Smolyaninov I.V., Poddel’sky A.I., Burmistrova D.A. et al. // Int. J. Mol. Sci. 2023. V. 24. № 9. P. 8319. https://doi.org/10.3390/ijms24098319
- Petrosyan V.D., Milaeva E.R., Gracheva Yu.A. et al. // Applied Organomet. Chem. 2002. V. 16. P. 655. https://doi.org/10.1002/aoc.360
- Antonova N.A., Kolyada M.N., Osipova V.P. et al. // Doklady Chem. 2008. V. 419. P. 62. https://doi.org/10.1134/s0012500808030051
- Devi J., Yadav J., Singh N. // Res. Chem. Intermed. 2019. V. 45. P. 3943. https://doi.org/10.1007/s11164-019-03830-60
- Devi J., Pachwania S., Kumar D. et al. // Res. Chem. Intermediates. 2022. V. 48. P. 267. https://doi.org/10.1007/s11164-021-04557-w
- Devi J., Pachwania S., Yadav J. et al. // Phosphorus, Sulfur Silicon Relat. Elem. 2021. V. 196. P. 119. https://doi.org/10.1080/10426507.2020.1818749.
- Devi J., Yadav J. // Anti-Cancer Agents Med. Chem. 2018. V. 18. P. 335. https://doi.org/10.2174/1871520617666171106125114
- Banti C.N., Hadjikakou S.K., Sismanoglu T. et al. // J. Inorg. Biochem. 2019. V. 194. P. 114. https://doi.org/10.1016/j.jinorgbio.2019.02.003
- Milaeva E.R., Shpakovsky D.B., Gracheva Y.A. et al. // Pure Appl. Chem. 2020. V. 92. № 8. P. 1201. https://doi.org/10.1515/pac-2019-1209
- Beltran H. I., Damian-Zea C., Hernández-Ortega S. et al. // J. Inorg. Biochem. 2007. V. 101. P. 1070. https://doi.org/10.1016/j.jinorgbio.2007.04.002
- Vinayak D. Dey D. Ghosh D. et al. // Appl. Organometal. Chem. 2017. V. Art. e4122. https://doi.org/10.1002/aoc.4122
Қосымша файлдар
