Synthesis and Structure of Manganese Complexes with N,N’-bis[(2,4,6-trimethylphenyl)imino]acenaphthene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Methods for the synthesis of new manganese(II) complexes with N,N’-bis[(2,4,6-trimethylphenyl) imino (acenaphthene (Tmp-bian), [Mn(Tmp-bian)Br2] (I), [Mn(Tmp-bian)(EtOH)Br2] (Ia), [Mn(Tmpbian) Cl2] (II), [Mn(Tmp-bian)2 (ClO4) 2] (III), and [Mn(Tmp-bian)2(OTs)2] (IV) were developed. The obtained compounds were characterized by elemental analysis and IR spectroscopy. The molecular structures of I, Iа, and III were determined by X-ray diffraction (CCDC no. 233510–233512). The electronic structures of I and III were established by quantum chemical calculations using density functional theory (DFT).

Texto integral

Acesso é fechado

Sobre autores

Yu. Laricheva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: nikolaj.romashev75@gmail.com
Rússia, Novosibirsk

Ch. Guan

Novosibirsk National Research State University

Email: nikolaj.romashev75@gmail.com
Rússia, Novosibirsk

N. Kuratieva

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: nikolaj.romashev75@gmail.com
Rússia, Novosibirsk

N. Romashev

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: nikolaj.romashev75@gmail.com
Rússia, Novosibirsk

A. Gushchin

Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: nikolaj.romashev75@gmail.com
Rússia, Novosibirsk

Bibliografia

  1. Kallmeier F., Kempe R. // Angew. Chem. Int. Ed. 2018. V. 57. № 1. P. 46.
  2. Najafpour M. M., Allakhverdiev S. I. // Int. J. Hydrogen Energy. 2012. V. 37. № 10. P. 8753.
  3. Mallick Ganguly O., Moulik S. // Dalton Trans. 2023. V. 52. № 31. P. 10639.
  4. Vinogradova K. A., Shekhovtsov N. A., Berezin A. S. et al. // Inorg. Chem. Commun. 2019. V. 100. P. 11.
  5. Berezin A.S., Vinogradova K.A., Nadolinny V.A. et al. // Dalton Trans. 2018. V. 47. № 5. P. 1657.
  6. Artem’Ev A.V., Davydova M.P., Berezin A.S. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 27. P. 31000.
  7. Davydova M. ., Bauer I.A., Brel V.K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 8. P. 695–703.
  8. Artem’ev A.V., Davydova M.P., Rakhmanova M.I. et al. // Inorg. Chem. Front. 2021. V. 8. № 15. P. 3767.
  9. Artem’ev A.V., Kashevskii A.V., Bogomyakov A.S. et al. // Dalton Trans. 2017. V. 46. № 18. P. 5965.
  10. Hu J. Q., Song E. H., Ye S. et al // J. Mater. Chem. C. 2017. V. 5. № 13. P. 3343.
  11. Zou S., Liu Y., Li J. et al. // J. Am. Chem. Soc. 2017. V. 139. № 33. P. 11443.
  12. Davydova M., Meng L., Rakhmanova M.I. et al. // Adv. Mater. 2023. V. 35. № 35. P. 2303611.
  13. Qin Y., She P., Huang X., Huang W. et al. // Coord. Chem. Rev. 2020. V. 416. P. 213331
  14. van Asselt R., Gielens E.E.C.G., Rülke R.E. et al. // J. Am. Chem. Soc. 1994. V. 116. № 3. P. 977.
  15. Fomenko I.S., Romashev N.F., Gushchin. A.L. // Coord. Chem. Rev. 2024. V. 514. P. 215845.
  16. Fedushkin I.L., Skatova A.A., Chudakova V.A. et al. // Angew. Chem. Int. Ed. 2003. V. 42. № 28. P. 3294.
  17. Bernauer J., Pölker J., Jacobi von Wangelin A. // ChemCatChem. 2022. V. 14. № 1. Art. e202101182.
  18. Fomenko I.S., Koshcheeva O.S., Kuznetsova N.I. et al. // Catalysts. 2023. V. 13. № 5. P. 849.
  19. Fomenko I. S., Gongola M. I., Shul’pina L. S. et al. // Catalysts. 2022. V. 12. № 10. P. 1168.
  20. Komlyagina V.I., Romashev N.F., Kokovkin V. et al. // Molecules. 2022. V. 27. № 20. P. 6961.
  21. Komlyagina V.I., Romashev N.F., Besprozvannykh V.K. et al. // Inorg. Chem. 2023. V. 62. № 29. P. 11541.
  22. Romashev N.F., Abramov P.A., Bakaev I. et al. // Inorg. Chem. 2022. V. 61. № 4. P. 2105.
  23. Hasan K., Zysman-Colman E. // Inorg. Chem. 2012. V. 51. № 22. P. 12560.
  24. Geary E.A.M., Yellowlees L.J., Jack L.A. et al. // Inorg. Chem. 2005. V. 44. № 2. P. 242.
  25. Bakaev I.V., Romashev N.F., Komlyagina V.I. et al. // New J. Chem. 2023. V. 47. № 40. P. 18825.
  26. Schmiege B.M., Carney M.J., Small B.L. et al. // Dalton Trans. 2007. № 24. P. 2547.
  27. Zhou M., Li X., Bu D.et al. // Polyhedron. 2018. V. 148. P. 88.
  28. Carrington S.J., Chakraborty I., Mascharak P.K. // Dalton Trans. 2015. V. 44. № 31. P. 13828.
  29. Fedushkin I.L., Sokolov V.G., Makarov V.M. et al. // Russ. Chem. Bull. 2016. V. 65. № 6. P. 1495.
  30. Bermejo M.R., Perez M.C., Fondo M. et al. // Synth. React. Inorg. Met. Chem. 1997. V. 27. № 7. P. 1009.
  31. Girolami G.S. // Inorg. Synth. 2002. V. 33. P. 91.
  32. El-Ayaan U., Murata F., El-Derby S. et al. // J. Mol. Struct. 2004. V. 692. № 1–3. P. 209.
  33. te Velde G., Bickelhaup, F.M., Baerends E.J. et al. // J. Comput. Chem. 2001. V. 22. № 9. P. 931.
  34. Van Lenthe E., Baerends E.J. // J. Comput. Chem. 2003. V. 24. № 9. P. 1142.
  35. Van Lenthe E., Snijders J.G., Baerends E.J. // J. Chem. Phys. 1996. V. 105. № 15. P. 6505.
  36. APEX2 (version 2.0), SAINT (version 8.18c), and SADABS (version 2.11), Bruker Advanced X-ray Solutions. Madison (WI, USA): Bruker AXS Inc., 2000–2012.
  37. Bruker Apex3 software suite: Apex3, SADABS-2016/2 and SAINT, version 2019.1-0; Bruker AXS Inc.: Madison, WI, 2017.
  38. Sheldrick G.M. SADABS. Program for Scaling and Correction of Area Detector Data. Göttingen (Germany): Unive. of Göttingen, 1996.
  39. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3.
  40. Singh G., Kapoor I.P.S., Kumar D. et al. // Inorg. Chim. Acta. 2009. V. 362. № 11. P. 4091.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Synthesis of Mn/BIAN complexes

Baixar (380KB)
3. Scheme 2. Synthesis of Mn/BIAN organometallic complexes

Baixar (100KB)
4. Scheme 3

Baixar (50KB)
5. Scheme 4. Synthesis of manganese complexes I-IV

Baixar (274KB)
6. Fig. 1. Molecular structure of complexes I and Ia according to PCA data. The insets show the selected angles of the Mn-Br(2)-N(2) (left) and Mn-Br(2)-N(2)-O (right) coordination unit. Hydrogen atoms are omitted for clarity

Baixar (176KB)
7. Fig. 2. Molecular structure of complex III according to PCA data (a); selected angles of the Mn-N(2)-O(2) coordination unit (b). Hydrogen atoms are not shown

Baixar (169KB)
8. Fig. 3. General view and energy levels of the boundary orbitals for the ground state of complex I. VZMO, VZMO-1, VZMO-2, VZMO-3, NSMO, NSMO+1 are shown

Baixar (214KB)
9. Fig. 4. General view and energy levels of the boundary orbitals for the ground state of complex III. VZMO, VZMO-1, VZMO-2, VZMO-3, NSMO, NSMO+1 are shown

Baixar (265KB)

Declaração de direitos autorais © Российская академия наук, 2024