Synthesis of carbonylchromium complexes of benzimidazole and quinoxaline derivatives
- Autores: Grishin A.V.1, Sazonova E.V.1, Somov N.V.1, Baryshnikova S.V.2, Grishina N.Y.1
-
Afiliações:
- National Research Lobachevsky State University of Nizhny Novgorod
- Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
- Edição: Volume 51, Nº 4 (2025)
- Páginas: 229-241
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/679428
- DOI: https://doi.org/10.31857/S0132344X25040038
- EDN: https://elibrary.ru/LPLEUH
- ID: 679428
Citar
Resumo
Two approaches to the preparation of chromium complexes of condensed heterocyclic compounds bearing two nitrogen atoms are approved. The reactions of benzimidazole (L1) and 2-methylbenzimidazole (L2) with triammine(tricarbonyl)chromium (I) give the corresponding pentacarbonylchromium derivatives [(η1-C7H6N2)]Cr(CO)5 (II) and [2-Me-(η1-C7H5N2)]Cr(CO)5 (III) characterized by the nitrogen–chromium σ-bond, and ammine(pentacarbonyl)chromium (Cr(NH3)(CO)5, IV) is formed as a by-product. Analogous reactions involving 1,2,3,4-tetrahydroquinoxaline (L3) and 3-phenyl-1,2-dihydroquinoxaline (L4) afford tricarbonylchromium π-complexes [(η6-C6H4)C2H6N2)]Cr(CO)3 (V) and [3-Ph-(η6-C6H4)C2H3N2)]Cr(CO)3 (VI), respectively. The condensations of (η6-ortho-phenylenediamine)tricarbonylchromium (VII) with benzaldehyde and of ortho- phenylenediamine with (η6-benzaldehyde)tricarbonylchromium (VIII) afford acyclic compounds (azomethines [PhCH=N(η6-C6H4)NH2]Cr(CO)3 (IX) and [(η6-Ph)CH=NC6H4NH2]Cr(CO)3 (X), respectively), whereas the reaction of acetaldehyde with complex VII gives a mixture of heterocyclic products: exo-[1,3-bis-(C2H4OEt)-2-Me-(η6-C6H4)CHN2]Cr(CO)3 (XI) and endo-[1,3-bis-(C2H4OEt)-2-Me-(η6-C6H4)CHN2]Cr(CO)3 (XII). The spectral characteristics of the synthesized compounds are studied, and their purity and individual character are proved. The molecular structures of complexes III and XI are determined by XRD (CIF files CCDC nos. 2245463 (III) and 2362231 (XI)).
Texto integral

Sobre autores
A. Grishin
National Research Lobachevsky State University of Nizhny Novgorod
Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod
E. Sazonova
National Research Lobachevsky State University of Nizhny Novgorod
Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod
N. Somov
National Research Lobachevsky State University of Nizhny Novgorod
Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod
S. Baryshnikova
Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences
Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod
N. Grishina
National Research Lobachevsky State University of Nizhny Novgorod
Autor responsável pela correspondência
Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod
Bibliografia
- Биометаллоорганическая химия / Под ред. Жауэна Ж. Москва: Бином, 2015. 505 с. (Bioorganometallics: Biomolecules, Labeling, Medicine. / Ed. Jaouen G. Weinheim: Willey-VCH, 2005. 444 p). https://doi.org/10.1002/3527607692
- Mahurkar N.D., Gawhale N.D. et al. // Res. Chem. 2023. V. 6. P. 101139. https://doi.org/10.1016/j.rechem.2023.101139
- Banerjee S., Mukherjee S., Nath P. et al. // Res. Chem. 2023. V. 6. P. 101013. https://doi.org/10.1016/j.rechem.2023.101013
- Rosillo M., Domı´nguez G., Pe´rez-Castells J. // Chem. Soc. Rev. 2007. V. 36. P. 1589. https://doi.org/10.1039/B606665H
- Гришина Н.Ю., Сазонова Е.В., Артемов А.Н. // Журн. орг. химии. 2022. Т. 58. № 6. С. 555 (Grishina N.Yu., Sazonova E.V., Artemov A.N. // Russ. J. Org. Chem. 2022. V 58. № 6. P. 727). https://doi.org/10.1134/S107042802206001X
- Transition Metal Arene π-Complexes in Organic Synthesis and Catalysts / Ed. Kündig E.P. Berlin: Springer-Verlag, 2004. V. 7. 232 p. https://doi.org/10.1007/b76615
- Schmalz H.-G., Dehmel F. Transition Metals for Organic Synthesis. 2nd Edn. / Eds. Beller M., Bolm C. Weinheim: Wiley-VCH, 2004. V. 1. P. 601. https://doi.org/10.1002/9783527619405
- Pape A.R., Kaliappan K.P., Kündig E.P. // Chem. Rev. 2000. V. 100. P. 2917. https://doi.org/ 10.1021/cr9902852
- Lopez C., Munoz-Hernandez M.A., Morales-Morales D. et al. // J. Organomet. Chem. 2003. V. 672. P. 58. 10.1016/S0022-328X(03)00140-2' target='_blank'>https://doi: 10.1016/S0022-328X(03)00140-2
- Wolfgramm R., Laschat S. // J. Organomet. Chem. 1999. V. 575. P. 141.
- Prokesova M., Тoma S. // Chem. Papers. 1993. V. 47. P. 314.
- Da Costa M.R.G., Curto M.J.M., Davies S.G. et al. // J. Organomet. Chem. 2000. V. 604. P. 157. https://doi 10.1016/S0022-328X(00)00215-1
- Quteishat L., Panossian A., Le Bideau F. et al. // J. Organomet. Chem. 2015. V. 776. P. 35e42. http://dx.doi.org/10.1016/j.jorganchem.2014.10.040
- Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. Физические свойства и методы очистки. М.: ИЛ, 1958. 519 с. (Weissberger A., Proskauer E., Riddick J.A., Toops E.E. Jr. Organic Solvents; Physical Properties and Methods of Purification,Intersci. New York – London: Publ. Inc., 1955. 552 p.).
- Методы получения химических реактивов и препаратов. № 22. М.: НИИТЭХИМ, 1970. С. 40.
- Grishina N.Yu., Sazonova E.V., Ushakova P.S. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 458. https://doi.org/ 10.1134/S1070328424600542
- Soni N., Soni N., Gupta P. // Der Pharma Chemica. 2016. V. № 4. P. 77.
- Saini S., Dhiman N., Mittal A., Kumar G. // J. Drug Delivery Therap. 2016. V. 6. № 3. P. 100. https://doi.org/10.22270/jddt.v6i3.1234
- Ye F., Liu X., Qu L. et al. // Indian J. Heterocycl. Chem. 2014. V. 23−24. № 24-02. P. 167.
- Fu Y., Wang J., Chen W. et al. // J. Heterocycl. Chem. 2017. V. 54. № 2. P. 3023. https://doi.org/10.1002/jhet.2911
- Behrens H., Harder N. // Chem. Ber. 1964. V. 97. P. 433.
- Cho W., Fernander G.E. // Synth. React. Inorg. Metal-Org. Chem. 1974. V. 4. № 5. P. 403.
- Drehfahl G., Horhold H.H., Kuhne K. // Chem. Ber. 1965. V. 98. P. 1826. https://doi.org/10.1002/cber.19650980622
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. P. 1281. https://doi.org/10.1107/S0021889811043202
- Clark R.C., Reid J.S. // Acta Crystallogr. 1995. V. 51. № 6. P. 887. https://doi.org/10.1107/S0108767395007367
- Fischer E.O., Goodwin H.A., Kreiter C.G et al. // J. Organomet. Chem. 1968. V. 14. P. 359.
- Karimi-Jaberi Z., Amiri M. // E-J. Chem. 2012. V. 9 (1). P. 167. https://doi.org/10.1155/2012/793978
- Пожарский А.Ф., Гарновский А.Д., Симонов А. М. // Успехи химии. 1966. Т. 35. № 2. С. 261.
- Jiang Y., Jia S., Li X. et al. // Chem. Papers. 2018. V. 72. P. 1265. https://doi.org/10.1007/s11696-017-0367-5
- Artemov A.N., Kolesova A.S., Sazonova E.V. et al. // J. Organomet. Chem. 2024. V. 100
- Гришина Н.Ю., Сазонова Е.В., Артемов А.Н. и др. // Изв. АН. Сер. хим. 2017. № 2. С. 313 (Grishina N.Yu., Sazonova E.V., Artemov A.N. et al. // Russ. Chem. Bull. 2017. V. 66. P. 313). https://doi.org/10.1007/s11172-017-1733-8
- Заровкина Н.Ю., Сазонова Е.В., Артемов А.Н., Фукин Г.К. // Изв. АН. Сер. хим. 2015. № 4. С. 923 (Zarovkina N.Yu., Sazonova E.V., Artemov A.N., Fukin G.K. // Russ. Chem. Bull. 2015. V. 64. P. 923). https://doi.org/10.1007/s11172-015-0956-9
- Заровкина Н.Ю., Сазонова Е.В., Артемов А.Н., Фукин Г.К. // Изв. АН. Сер. хим. 2014. № 4. С. 970 (Zarovkina N.Yu., Sazonova E.V., Artemov A.N., Fukin G.K. // Russ. Chem. Bull. 2014. V. 63. P. 970). https://doi.org/10.1007/s11172-014-0535-5
Arquivos suplementares
