Synthesis of carbonylchromium complexes of benzimidazole and quinoxaline derivatives

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Two approaches to the preparation of chromium complexes of condensed heterocyclic compounds bearing two nitrogen atoms are approved. The reactions of benzimidazole (L1) and 2-methylbenzimidazole (L2) with triammine(tricarbonyl)chromium (I) give the corresponding pentacarbonylchromium derivatives [(η1-C7H6N2)]Cr(CO)5 (II) and [2-Me-(η1-C7H5N2)]Cr(CO)5 (III) characterized by the nitrogen–chromium σ-bond, and ammine(pentacarbonyl)chromium (Cr(NH3)(CO)5, IV) is formed as a by-product. Analogous reactions involving 1,2,3,4-tetrahydroquinoxaline (L3) and 3-phenyl-1,2-dihydroquinoxaline (L4) afford tricarbonylchromium π-complexes [(η6-C6H4)C2H6N2)]Cr(CO)3 (V) and [3-Ph-(η6-C6H4)C2H3N2)]Cr(CO)3 (VI), respectively. The condensations of (η6-ortho-phenylenediamine)tricarbonylchromium (VII) with benzaldehyde and of ortho- phenylenediamine with (η6-benzaldehyde)tricarbonylchromium (VIII) afford acyclic compounds (azomethines [PhCH=N(η6-C6H4)NH2]Cr(CO)3 (IX) and [(η6-Ph)CH=NC6H4NH2]Cr(CO)3 (X), respectively), whereas the reaction of acetaldehyde with complex VII gives a mixture of heterocyclic products: exo-[1,3-bis-(C2H4OEt)-2-Me-(η6-C6H4)CHN2]Cr(CO)3 (XI) and endo-[1,3-bis-(C2H4OEt)-2-Me-(η6-C6H4)CHN2]Cr(CO)3 (XII). The spectral characteristics of the synthesized compounds are studied, and their purity and individual character are proved. The molecular structures of complexes III and XI are determined by XRD (CIF files CCDC nos. 2245463 (III) and 2362231 (XI)).

Texto integral

Acesso é fechado

Sobre autores

A. Grishin

National Research Lobachevsky State University of Nizhny Novgorod

Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod

E. Sazonova

National Research Lobachevsky State University of Nizhny Novgorod

Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod

N. Somov

National Research Lobachevsky State University of Nizhny Novgorod

Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod

S. Baryshnikova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod

N. Grishina

National Research Lobachevsky State University of Nizhny Novgorod

Autor responsável pela correspondência
Email: zarovkinan@mail.ru
Rússia, Nizhny Novgorod

Bibliografia

  1. Биометаллоорганическая химия / Под ред. Жауэна Ж. Москва: Бином, 2015. 505 с. (Bioorganometallics: Biomolecules, Labeling, Medicine. / Ed. Jaouen G. Weinheim: Willey-VCH, 2005. 444 p). https://doi.org/10.1002/3527607692
  2. Mahurkar N.D., Gawhale N.D. et al. // Res. Chem. 2023. V. 6. P. 101139. https://doi.org/10.1016/j.rechem.2023.101139
  3. Banerjee S., Mukherjee S., Nath P. et al. // Res. Chem. 2023. V. 6. P. 101013. https://doi.org/10.1016/j.rechem.2023.101013
  4. Rosillo M., Domı´nguez G., Pe´rez-Castells J. // Chem. Soc. Rev. 2007. V. 36. P. 1589. https://doi.org/10.1039/B606665H
  5. Гришина Н.Ю., Сазонова Е.В., Артемов А.Н. // Журн. орг. химии. 2022. Т. 58. № 6. С. 555 (Grishina N.Yu., Sazonova E.V., Artemov A.N. // Russ. J. Org. Chem. 2022. V 58. № 6. P. 727). https://doi.org/10.1134/S107042802206001X
  6. Transition Metal Arene π-Complexes in Organic Synthesis and Catalysts / Ed. Kündig E.P. Berlin: Springer-Verlag, 2004. V. 7. 232 p. https://doi.org/10.1007/b76615
  7. Schmalz H.-G., Dehmel F. Transition Metals for Organic Synthesis. 2nd Edn. / Eds. Beller M., Bolm C. Weinheim: Wiley-VCH, 2004. V. 1. P. 601. https://doi.org/10.1002/9783527619405
  8. Pape A.R., Kaliappan K.P., Kündig E.P. // Chem. Rev. 2000. V. 100. P. 2917. https://doi.org/ 10.1021/cr9902852
  9. Lopez C., Munoz-Hernandez M.A., Morales-Morales D. et al. // J. Organomet. Chem. 2003. V. 672. P. 58. 10.1016/S0022-328X(03)00140-2' target='_blank'>https://doi: 10.1016/S0022-328X(03)00140-2
  10. Wolfgramm R., Laschat S. // J. Organomet. Chem. 1999. V. 575. P. 141.
  11. Prokesova M., Тoma S. // Chem. Papers. 1993. V. 47. P. 314.
  12. Da Costa M.R.G., Curto M.J.M., Davies S.G. et al. // J. Organomet. Chem. 2000. V. 604. P. 157. https://doi 10.1016/S0022-328X(00)00215-1
  13. Quteishat L., Panossian A., Le Bideau F. et al. // J. Organomet. Chem. 2015. V. 776. P. 35e42. http://dx.doi.org/10.1016/j.jorganchem.2014.10.040
  14. Вайсбергер А., Проскауэр Э., Риддик Дж., Тупс Э. Органические растворители. Физические свойства и методы очистки. М.: ИЛ, 1958. 519 с. (Weissberger A., Proskauer E., Riddick J.A., Toops E.E. Jr. Organic Solvents; Physical Properties and Methods of Purification,Intersci. New York – London: Publ. Inc., 1955. 552 p.).
  15. Методы получения химических реактивов и препаратов. № 22. М.: НИИТЭХИМ, 1970. С. 40.
  16. Grishina N.Yu., Sazonova E.V., Ushakova P.S. et al. // Russ. J. Coord. Chem. 2024. V. 50. P. 458. https://doi.org/ 10.1134/S1070328424600542
  17. Soni N., Soni N., Gupta P. // Der Pharma Chemica. 2016. V. № 4. P. 77.
  18. Saini S., Dhiman N., Mittal A., Kumar G. // J. Drug Delivery Therap. 2016. V. 6. № 3. P. 100. https://doi.org/10.22270/jddt.v6i3.1234
  19. Ye F., Liu X., Qu L. et al. // Indian J. Heterocycl. Chem. 2014. V. 23−24. № 24-02. P. 167.
  20. Fu Y., Wang J., Chen W. et al. // J. Heterocycl. Chem. 2017. V. 54. № 2. P. 3023. https://doi.org/10.1002/jhet.2911
  21. Behrens H., Harder N. // Chem. Ber. 1964. V. 97. P. 433.
  22. Cho W., Fernander G.E. // Synth. React. Inorg. Metal-Org. Chem. 1974. V. 4. № 5. P. 403.
  23. Drehfahl G., Horhold H.H., Kuhne K. // Chem. Ber. 1965. V. 98. P. 1826. https://doi.org/10.1002/cber.19650980622
  24. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  25. Hübschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. P. 1281. https://doi.org/10.1107/S0021889811043202
  26. Clark R.C., Reid J.S. // Acta Crystallogr. 1995. V. 51. № 6. P. 887. https://doi.org/10.1107/S0108767395007367
  27. Fischer E.O., Goodwin H.A., Kreiter C.G et al. // J. Organomet. Chem. 1968. V. 14. P. 359.
  28. Karimi-Jaberi Z., Amiri M. // E-J. Chem. 2012. V. 9 (1). P. 167. https://doi.org/10.1155/2012/793978
  29. Пожарский А.Ф., Гарновский А.Д., Симонов А. М. // Успехи химии. 1966. Т. 35. № 2. С. 261.
  30. Jiang Y., Jia S., Li X. et al. // Chem. Papers. 2018. V. 72. P. 1265. https://doi.org/10.1007/s11696-017-0367-5
  31. Artemov A.N., Kolesova A.S., Sazonova E.V. et al. // J. Organomet. Chem. 2024. V. 100
  32. Гришина Н.Ю., Сазонова Е.В., Артемов А.Н. и др. // Изв. АН. Сер. хим. 2017. № 2. С. 313 (Grishina N.Yu., Sazonova E.V., Artemov A.N. et al. // Russ. Chem. Bull. 2017. V. 66. P. 313). https://doi.org/10.1007/s11172-017-1733-8
  33. Заровкина Н.Ю., Сазонова Е.В., Артемов А.Н., Фукин Г.К. // Изв. АН. Сер. хим. 2015. № 4. С. 923 (Zarovkina N.Yu., Sazonova E.V., Artemov A.N., Fukin G.K. // Russ. Chem. Bull. 2015. V. 64. P. 923). https://doi.org/10.1007/s11172-015-0956-9
  34. Заровкина Н.Ю., Сазонова Е.В., Артемов А.Н., Фукин Г.К. // Изв. АН. Сер. хим. 2014. № 4. С. 970 (Zarovkina N.Yu., Sazonova E.V., Artemov A.N., Fukin G.K. // Russ. Chem. Bull. 2014. V. 63. P. 970). https://doi.org/10.1007/s11172-014-0535-5

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1

Baixar (77KB)
3. Fig. 1. Molecular structure of 2-methyl-(η1-benzimidazole)chromopentacarbonyl (III). Thermal ellipsoids are shown with 80% probability. Hydrogen atoms are not shown.

Baixar (130KB)
4. Scheme 2

Baixar (34KB)
5. Scheme 3

Baixar (104KB)
6. Scheme 4

Baixar (230KB)
7. Fig. 2. Molecular structure of 1,3-bis-(1-ethoxyethyl)-2-methyl-(η6-2,3-dihydrobenzimidazole)chromium tricarbonyl (XI). Thermal ellipsoids are shown with 80% probability. Hydrogen atoms are not shown.

Baixar (169KB)
8. Scheme 5

Baixar (169KB)

Declaração de direitos autorais © Российская академия наук, 2025