Fe(III), Co(III), and Cu(II) Complexes with Acylhydrazones Containing a Triphenylphosphonium Moiety: Synthesis, Crystal Structure, and Antibacterial Activity
- Autores: Matiukhina A.K.1, Zorina-Tikhonova E.N.1, Gogoleva N.V.1, Popov L.D.2, Morozov P.G.2, Lazarenko V.A.3, Zubenko A.A.4, Fetisov L.N.4, Svyatogorova A.E.4, Kiskin M.A.1, Eremenko I.L.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Southern Federal University
- National Research Center “Kurchatov Institute”
- North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center
 
- Edição: Volume 51, Nº 6 (2025)
- Páginas: 387-399
- Seção: Articles
- URL: https://cardiosomatics.ru/0132-344X/article/view/687260
- DOI: https://doi.org/10.31857/S0132344X25060047
- EDN: https://elibrary.ru/KINTIN
- ID: 687260
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
New acylhydrazones based on para- and meta-nitrobenzhydrazides and substituted salicylic aldehyde containing a triphenylphosphonium fragment were synthesized and spectrally characterized. With these acylhydrazones, a series of new mononuclear coordination compounds of Fe(III), Co(III), and Cu(II) were obtained, the molecular structure of which was determined by single-crystal X-ray diffraction. The antibacterial activity of the isolated acylhydrazones and copper(II) complexes against Staphylococcus aureus and Escherichia coli was studied. It was shown that the transition from an organic compound to a complex one contributes to a significant increase in activity against E. coli.
Texto integral
 
												
	                        Sobre autores
A. Matiukhina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
E. Zorina-Tikhonova
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
N. Gogoleva
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
L. Popov
Southern Federal University
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don						
P. Morozov
Southern Federal University
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don						
V. Lazarenko
National Research Center “Kurchatov Institute”
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Zubenko
North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Novocherkassk						
L. Fetisov
North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Novocherkassk						
A. Svyatogorova
North Caucasus Zonal Research Veterinary Institute, Branch, Federal Rostov Agrarian Research Center
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Novocherkassk						
M. Kiskin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
I. Eremenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
														Email: ezorinatikhonova@igic.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Larsson D.G.J., Flach C.-F. // Nat. Rev. Microbiol. 2022. V. 20. P. 257. https://doi.org/10.1038/s41579-021-00649-x
- Darby E.M., Trampari E., Siasat P. et al. // Nat. Rev. Microbiol. 2024. V. 21. P. 280. https://doi.org/10.1038/s41579-022-00820-y
- Lucien M.A.B., Canarie M.F., Kilgore P.E. et al. // Int. J. Infect. Dis. 2021. V. 104. P. 250. https://doi.org/10.1016/j.ijid.2020.12.087
- Ding D., Wang B., Zhang X. et al. // Ecotoxicol. Environ. Saf. V. 254. P. 114734. https://doi.org/10.1016/j.ecoenv.2023.114734
- Vlad I.M., Nuță D.C., Căproiu M.T. et al. // Antibiotics. 2024. V. 13. № 3. P. 212. https://doi.org/10.3390/antibiotics13030212
- Sharma P.C., Sharma D., Sharma A. et al. // Mater. Today Chem. 2020. V. 18. P. 100349. https://doi.org/10.1016/j.mtchem.2020.100349
- Matiukhina A.K., Vladimirova А.E., Zorina-Tikhonova Е.N. et al. // Russ. J. Gen. Chem. 2023. V. 93 № 2. P. S596. https://doi.org/10.1134/S1070363223150276
- Czyżewska I., Mazur L., Popiołek Ł. // Chem. Biol. Drug Des. 2024. V. 104. № 1. P. e14590. https://doi.org/10.1111/cbdd.14590
- Deng J., Gou Y., Chen W. // Bioorg. Med. Chem. 2016. V. 24. № 10. P. 2190. https://doi.org/10.1016/j.bmc.2016.03.033
- Chimmalagi G.H., Kendur U., Patil S.M. et al. // Appl. Organomet. Chem. 2018. V. 32. № 6. P. e4337. https://doi.org/10.1002/aoc.4337
- Fekri R., Salehi M., Asadi A., Kubicki M. // Appl. Organomet. Chem. 2018. V. 32. № 2, P. e4019. https://doi.org/10.1002/aoc.4019
- Chimmalagi G.H., Kendur U., Patil S.M. et al. // Appl. Organomet. Chem. 2019. V. 33. № 1. P. e4557. https://doi.org/10.1002/aoc.4557
- Jansová H., Kubeš J., Reimerová P. et al. // Chem. Res. Toxicol. 2018. V. 31. № 11. P. 1151. https://doi.org/10.1021/acs.chemrestox.8b00165
- Bashir M., Dar A.A., Yousuf I. // ACS Omega. 2023. V. 8. № 3. P. 3026. https://doi.org/10.1021/acsomega.2c05927
- Jing C., Wang C., Yan K. et al. // Bioorg. Med. Chem. 2016. V. 24. № 2. P. 270. https://doi.org/10.1016/j.bmc.2015.12.013
- Hamzi I. // Mini-Rev. Org. Chem. 2022. V. 19. № 8. P. 968. https://doi.org/10.2174/1570193x19666220328124048
- Thota S., Rodrigues D.A., Pinheiro P.S.M. et al. // Bioorg. Med. Chem. Lett. 2018. V. 28. № 17. P. 2797. https://doi.org/10.1016/j.bmcl.2018.07.015
- Asadi Z., Haddadi E., Sedaghat M. // J. Photochem. Photobiol. A. 2017. V 337. P. 140. https://doi.org/10.1016/j.jphotochem.2017.01.022
- Li Y., Yang Z., Zhou M. et al. // RSC Adv. 2017. V. 7. P. 41527. https://doi.org/10.1039/c7ra05504h
- Li Y., Yang Z., Zhou M., Lia Y. // RSC Adv. 2017. V. 7. P. 49404. https://doi.org/10.1039/c7ra10283f
- Lauria A., Bonsignore R., Terenzi A. et al. // Dalton Trans. 2014. V. 43. P. 6108. https://doi.org/10.1039/c3dt53066c
- Anastasiadou D., Psomas G., Kalogiannis S. et al. // J. Inorg. Biochem. 2019. V. 198. P. 110750. https://doi.org/10.1016/j.jinorgbio.2019.110750
- Burlov A.S., Vlasenko V.G., Chal’tsev B.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 439. https://doi.org/10.1134/s1070328421070010
- Stadler A.-M., Harrowfield J. // Inorg. Chim. Acta. 2009. V. 362. № 12. P. 4298. https://doi.org/10.1016/j.ica.2009.05.062
- Murphy M.P., Smith R.A.J. // Annu. Rev. Pharmacol. Toxicol. 2007. V. 47. P. 629. https://doi.org/10.1146/annurev.pharmtox.47.120505. 105110
- Milenković M.R., Živković-Radovanović V., Andjelković L. // Russ. J. Gen. Chem. 2020. V. 90, P. 1716. https://doi.org/10.1134/s1070363220090194
- Lee S.K., Tan K.W., Ng S.W. et al. // Spectrochim. Acta. A. 2014. V. 121. P. 101. https://doi.org/10.1016/j.saa.2013.10.084
- Sheldrick G.M. SADABS. Madison (WI, USA): Bruker AXS Inc., 1996.
- Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1900184. https://doi.org/10.1002/crat.201900184
- Lazarenko V.A., Dorovatovskii P.V., Zubavichus Y.V. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
- Kabsch W. // Acta Crystallogr. D. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Spek A.L. // Acta Crystallogr. C. 2015. V. 71. P. 9. https://doi.org/10.1107/S2053229614024929
- Llunell M., Casanova D., Cirera J. et al. SHAPE, v.2.1, Program for the stereochemical analysis of molecular fragments by means of continuous shape measures and associated tools. Barcelona (Spain): Universitat de Barcelona, 2013.
- Scarlett N.V.Y., Madsen I.C. // Powder Diffr. 2006. V. 21. № 4. P. 278. https://doi.org/10.1154/1.2362855
- Adam M.S.S., Alghanim A.S.I., Abualreish M.J.A. et al. // Appl. Organomet. Chem. 2024. V. 38. № 4. Art. e7394. https://doi.org/10.1002/aoc.7394
- Yan Y.-B., Yang R.-W., Zhang H.-W. et al. // J. Mol. Struct. 2024. V. 1299. P. 137148. https://doi.org/10.1016/j.molstruc.2023.137148
- El-Sherif A.A., Fetoh A., Abdulhamed Y.Kh., Abu El-Reash G.M. // Inorg. Chim. Acta. 2018. V. 480. P. 1. https://doi.org/10.1016/j.ica.2018.04.038
- Adly O.M.I., Taha A., Ibrahim M.A. // Appl. Organomet. Chem. 2022. V. 36. № 3. Art. e6558. https://doi.org/10.1002/aoc.6558
- Alkhatib F.M., Alsulami H.M. // Heliyon. 2023. V. 9. № 8. Art. e18988. https://doi.org/10.1016/j.heliyon.2023.e18988
- Ahmed M.A., Zhernakov M.A., Gilyazetdinov E.M. et al. // Inorganics. 2023. V. 11. № 4. P. 167. https://doi.org/10.3390/inorganics11040167
- El-Gammal O.A., Abu El-Reash G.M., Bedier R.A. // Appl. Organomet. Chem. 2019. V. 33. № 10. Art. e5141. https://doi.org/10.1002/aoc.5141
- Bellamy L.J. The Infrared Spectra of Complex Molecules. Springer Dordrecht. Chapman and Hall, London, 1980. https://doi.org/10.1007/978-94-011-6520-4
- Hashem H.E., Mohamed E.A., Farag A.A. et al. // Appl. Organomet. Chem. 2021. V. 35. № 9. Art. e6322. https://doi.org/10.1002/aoc.6322
- Edwards D.A., Richards R. // Spectrochim Acta. A. 1978. V. 34. № 2. P. 167. https://doi.org/ 10.1016/0584-8539(78)80111-1
- Huang D.-S., Liu X.-R., Zhao S.-S., Yang Z.-W. // Polyhedron. 2022. V. 211. P. 115516. https://doi.org/10.1016/j.poly.2021.115516
- Chang L.-L., Yang J., Lai S.-Q. et al. // Inorg. Chim. Acta. 2022. V. 532. P. 120751. https://doi.org/10.1016/j.ica.2021.120751
- Dinku D., Demissie T.B., Beas I.N. et al. // Inorg. Chem. Commun. 2024. V. 160. P. 111903. https://doi.org/10.1016/j.inoche.2023.111903
- Shakdofa M.M.E., Al-Hakimi A.N., Elsaied F.A. et al. // Bull. Chem. Soc. Ethiop. 2017. V. 31. № 1. P. 75. https://doi.org/10.4314/bcse.v31i1.7
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



