Implementation of analytic projective geometry for computer graphics
- Autores: Gevorkyan M.N.1, Korol’kova A.V.2, Kulyabov D.S.1,2, Sevast’yanov L.A.1,2
- 
							Afiliações: 
							- RUDN University
- Joint Institute for Nuclear Research
 
- Edição: Nº 2 (2024)
- Páginas: 51-65
- Seção: КОМПЬЮТЕРНАЯ АЛГЕБРА
- URL: https://cardiosomatics.ru/0132-3474/article/view/675705
- DOI: https://doi.org/10.31857/S0132347424020089
- EDN: https://elibrary.ru/ROPXHV
- ID: 675705
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In their research, the authors actively exploit different branches of geometry. For geometric constructions, computer algebra approaches and systems are used. Currently, we are interested in computer geometry, more specifically, the implementation of computer graphics. The use of the projective space and homogeneous coordinates has actually become a standard in modern computer graphics. In other words, the problem is reduced to the application of analytic projective geometry. The authors failed to find a computer algebra system that could implement projective geometry in its entirety. Therefore, it was decided to partially implement computer algebra for visualization of algebraic relations. For this purpose, the Asymptote system was employed.
Texto integral
 
												
	                        Sobre autores
M. Gevorkyan
RUDN University
							Autor responsável pela correspondência
							Email: gevorkyan-mn@rudn.ru
				                					                																			                												                	Rússia, 							6 Miklukho-Maklaya St, Moscow, 117198						
A. Korol’kova
Joint Institute for Nuclear Research
														Email: korolkova-av@rudn.ru
				                					                																			                												                	Rússia, 							6 ul. Zholio-Kyuri 6, Dubna, Moscow oblast, 141980						
D. Kulyabov
RUDN University; Joint Institute for Nuclear Research
														Email: kulyabov-ds@rudn.ru
				                					                																			                												                	Rússia, 							6 Miklukho-Maklaya St, Moscow, 117198; 6 ul. Zholio-Kyuri 6, Dubna, Moscow oblast, 141980						
L. Sevast’yanov
RUDN University; Joint Institute for Nuclear Research
														Email: sevastianov-la@rudn.ru
				                					                																			                												                	Rússia, 							6 Miklukho-Maklaya St, Moscow, 117198; 6 ul. Zholio-Kyuri 6, Dubna, Moscow oblast, 141980						
Bibliografia
- Korolkova A.V., Gevorkyan M.N., Kulyabov D.S. Implementation of hyperboliccomplex numbers in Julia language, Discrete Contin. Models Appl. Comput. Sci., 2022, vol. 30, no. 4, pp. 318–329.
- Kulyabov D.S., Korolkova A.V., Sevastianov L.A. Complex numbers for relativistic operations, 2021.
- Kulyabov D.S., Korolkova A.V., Gevorkyan M.N. Hyperbolic numbers as Einstein numbers, J Phys.: Conf. Ser., 2020, vol. 1557, p. 012027.
- Gevorkyan M.N., Korolkova A.V., Kulyabov D.S. Approaches to the implementation of generalized complex numbers in the Julia language, Workshop on Information Technology and Scientific Computing in the framework of the X Int. Conf. Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM), Kulyabov, D.S., Samouylov, K.E., and Sevastianov, L.A., Eds., 2020, vol. 2639, pp. 141–157.
- Gevorkyan M.N., Korol’kova A.V., Kulyabov D.S. Implementation of geometric algebra in symbolic computation systems, Programmirovanie, 2023, no. 1, pp. 48–55.
- Korol’kova A.V., Gevorkyan M.N., Kulyabov D.S., Sevast’yanov L.A. Computer algebra tools for geometrization of Maxwell’s equations, Program. Comput. Software, 2023, vol. 49, pp. 336–371.
- Velieva T.R., Gevorkyan M.N., Demidova A.V., Korol’kova A.V., Kulyabov D.S. Geometric algebra and quaternion techniques in computer algebra systems for describing rotations in Eucledean space, Comput. Math. Math. Phys., 2023, vol. 63, pp. 29–39.
- Bowman J.C. Hammerlindl A. Asymptote: A vector graphics language, 2008, vol. 29, no. 2, pp. 288–294.
- Bowman J.C. Asymptote: Interactive TEX-aware 3D vector graphics, 2010, vol. 31, no. 2, pp. 203–205.
- Shardt O., Bowman J.C. Surface parameterization of nonsimply connected planar Bzier regions, Comput.-Aided Des., 2012, vol. 44, no. 5, pp. 484.e1–484.e10.
- Bowman, J.C. Asymptote: The vector graphics language, 2023. https://asymptote.sourceforge.io.
- Gevorkyan M.N., Korolkova A.V., Kulyabov D.S. Asymptote-based scientific animation, Discrete Contin. Models Appl. Comput. Sci., 2023, vol. 31, no. 2, pp. 139–149.
- Stroustrup B. Programming: Principles and Practice Using C++, Addison-Wesley Professional, 2014, 2nd ed.
- Hobby J., Knuth D. MetaPost on the web. https://www.tug.org/metapost.html.
- Staats C. An Asymptote tutorial, 2022. https://asymptote.sourceforge.io/asymptote_tutorial.pdf.
- Kryachkov Yu.G. Asymptote for beginners. http://mif.vspu.ru/books/ASYfb.pdf.
- Volchenko Yu.M. Scientific graphics in the Asymptote language. http://www.math.volchenko.com/AsyMan.pdf.
- Ivaldi, Ph., Euclidean Geometry with ASYMPTOTE, 2011.
- Lengyel E. Foundations of game engine development, Terathon Software LLC, vol. 1. http://foundationsofgameenginedev.com.
- Marschner S., Shirley P. Fundamentals of Computer Graphics, CRC Press, 5 ed.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



