Фрагментарная модель атомной структуры ионопроводящего полупроводникового стекла AgGeAsSe3
- Авторы: Алейникова К.Б.1, Зинченко Е.Н.1, Мельникова Н.В.2
- 
							Учреждения: 
							- Воронежский государственный университет
- Уральский федеральный университет, Институт естественных наук и математики
 
- Выпуск: Том 49, № 5 (2023)
- Страницы: 499-511
- Раздел: Статьи
- URL: https://cardiosomatics.ru/0132-6651/article/view/663323
- DOI: https://doi.org/10.31857/S0132665123600267
- EDN: https://elibrary.ru/YBVGBH
- ID: 663323
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Функция радиального распределения атомов стеклообразного AgGeAsSe3, полученная на основе экспериментальных кривых интенсивности, снятых на монохроматизированных медном и молибденовом излучениях, интерпретирована с помощью фрагментарной модели во всей области упорядочения (~9 Å). Показано, что стекло состоит из селеновых и селено-мышьяковистых тетраэдров с атомами германия и серебра внутри. Пространственное расположение таких тетраэдров в стекле в пределах области упорядочения подобно их расположению в структурах GeAsSe и GeSe2. Сделано предположение, что “ажурное” строение фрагментов этих структур обеспечивает возможность перемещения ионов Ag+ (ионную проводимость) в стеклообразном AgGeAsSe3. Фрагменты структуры ионопроводящего соединения Ag2Se в исследуемом стекле не обнаружены.
Об авторах
К. Б. Алейникова
Воронежский государственный университет
														Email: xenale@mail.ru
				                					                																			                												                								Россия, 394018, Воронеж, Университетская площадь, 1						
Е. Н. Зинченко
Воронежский государственный университет
														Email: zinchenko@vsu.ru
				                					                																			                												                								Россия, 394018, Воронеж, Университетская площадь, 1						
Н. В. Мельникова
Уральский федеральный университет, Институт естественных наук и математики
							Автор, ответственный за переписку.
							Email: nvm.melnikova@gmail.com
				                					                																			                												                								Россия, 620002, Екатеринбург, ул. Мира, 19						
Список литературы
- Chalcogenide Glasses: Preparation, Properties and Applications. Edited by J.-L. Adam, X. Zhang. Woodhead Publishing, 2014. 704 p.
- Singh A.K., Jen T.-C. Chalcogenide. Carbon Nanotubes and Graphene Composites. London–New York: CRC Press, 2021. 293 p.
- Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. Т. 1. СПб.: Изд-во С.-Петерб. ун-та, 2000. 616 с.
- Kawamura J., Asayama R., Kuwata N., Kamishima O. Ionic transport in glass and polymer: Hierarchical structure and dynamics. In book “Physics of Solid State Ionics”. Edited by T. Sakuma and H. Takahashi. Research Signpost, 2006. P. 193–246.
- Баранова Е.Р., Кобелев Л.Я., Злоказов В.Б. и др. Патент РФ № 2066076.
- Melnikova N., Kheifets O., Babushkin A., Sukhanova G. Transport properties of amorphous chalcogenides in the system Cu–Ag–Ge–As–Se in a broad range of temperatures and pressures // European Physics Journal (EPJ) Web of Conferences. 2011. V. 15. P. 03004.
- Алейникова К.Б., Зинченко Е.Н., Лихач Н.И. Дифракционные методы анализа нанодисперсных материалов // Заводская лаборатория. Диагностика материалов. 2005. Т. 71. № 4. С. 27–31.
- Алейникова К.Б., Зинченко Е.Н. Фрагментарная модель как метод фазового анализа дифракционно-аморфных материалов // Журн. структурной химии. 2009. Т. 50. ПРИЛОЖЕНИЕ. С. 100–106.
- Aleinikova K.B., Zinchenko E.N., Zmeikin A.A. Application of fragmentary model to analysis of the atomic structure of amorphous materials // J. of Physics: Conference Series. 2021. V. 1942. P. 012 011.
- Cromer D.T., Waber J.T. Scattering Factors Computed from Relativistic Dirac-Slater Wave Functions // Acta Cryst. 1965. V. 18. P. 104–109.
- Набитович И.Д., Стецив Я.И., Волощук Я.В. Определение когерентной интенсивности и интенсивности фона по экспериментальной кривой рассеяния электронов // Кристаллография. 1967. Т. 12. № 4. С. 584–590.
- Мак-Кракен Д., Дорн У. Численные методы и программирование на Фортране. М.: Мир, 1977. 584 с.
- Фаддеев М.А., Марков К.А. Численные методы. Нижний Новгород: Изд-во Нижегородского госуниверситета, 2005. 156 с.
- Вайнштейн Б.К. К теории метода радиального распределения // Кристаллография. 1957. Т. 2. № 1. С. 29–37.
- Уоррен Б.Е. Рентгеновские исследования структуры стекол // Кристаллография. 1971. Т. 16. № 6. С. 1264–1273.
- Порай-Кошиц М.А. Практический курс рентгеноструктурного анализа. Т. II. М.: Изд-во МГУ, 1960. 632 с.
- Алейникова К.Б., Зинченко Е.Н., Змейкин А.А. Особенности атомного строения аморфного сплава Al85Ni10Nd5 // Физика и химия стекла. 2021. Т. 47. № 5. С. 543–553.
- Aleinikova K.B., Likhach N.I. Fragmentary Model as Applied to Analysis of Spectroscopically Pure Vitreous SiO2 // Glass Phys. Chem. 2005. V. 31. P. 648–655.
- Oliveria M., McMullan R.K., Wuensch B.J. Single crystal neutron diffraction analysis of the cation distribution in the high-temperature phases α-Cu2 – xS, α-Cu2 – xSe, and α-Ag2Se // Solid State Ionics. 1988. V. 28–30. P. 1332–1337.
- Carre D., Ollitrault-Fichet R., Flahaut J. Structure de Ag8GeSe6 beta // Acta Cryst. B. 1980. V. 36. P. 245–249.
- Нуриев И.Р., Имамов Р.М., Шафизаде Р.Б. О структуре новой кубической фазы в системе Ag–Se // Кристаллография. 1971. Т. 16. С. 1028–1030.
- Villarreal M.A., de Chalbaud L.M., Fernadez B.J. et al. Preparation and electrical characterization of the compound CuAgGeSe3 // Journal of Physics: Conference Series. 2009. V. 167. P. 012045.
- Hulliger F., Siegrist T. The crystal structure of GeAsSe // Materials Research Bulletin. 1981. V. 16. P. 1245–1251.
- Dittmar G., Schäfer H. Die Kristallstruktur von Germaniumdiselenid // Acta Cryst. B. 1976. V. 32. P. 2726–2728.
- Pradel A., Piarristeguy A.A. Ag-conducting chalcogenide glasses: applications in programmable metallization cells. In book “Nanostructured Materials for advanced Technological Application”. Netherlands: Springer, 2009. P. 435–444.
- Cuello G.J., Piarristeguy A.A., Fernandez-Martinez A. et al. Structure of chalcogenide glasses by neutron diffraction // Journal of Non-Crystalline Solids. 2007. V. 353. P. 729–732.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 











