The ionospheric electric field perturbation with an increase in radon emanation
- Autores: Denisenko V.V.1, Rozanov E.V.2, Belyuchenko K.V.3, Bessarab F.S.3, Golubenko K.S.4, Klimenko M.V.3
- 
							Afiliações: 
							- Institute of Computational Modelling SB RAS
- Sankt-Petersburg State University
- West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
- Oulu University
 
- Edição: Volume 43, Nº 6 (2024)
- Páginas: 72-80
- Seção: Химическая физика атмосферных явлений
- URL: https://cardiosomatics.ru/0207-401X/article/view/674938
- DOI: https://doi.org/10.31857/S0207401X24060086
- ID: 674938
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Due to the increase in radon emanation, the conductivity in the surface layer of air increases, which causes variations in the electric fields in the low atmosphere and according to some hypotheses in the ionosphere. There are known proposals on the possibility of using such ionospheric disturbances as precursors of earthquakes. We simulate the ionospheric electric fields in the framework of a quasi-stationary model of the conductor consisting of the atmosphere including the ionosphere. The consequences of the paradoxical point of view about a decrease in the conductivity of surface air with an increase in radon content are also considered. Even with extreme radon emanation, disturbances of the ionospheric electric field are obtained three to four orders of magnitude smaller than the supposed precursors of earthquakes.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
V. Denisenko
Institute of Computational Modelling SB RAS
							Autor responsável pela correspondência
							Email: denisen@icm.krasn.ru
				                					                																			                												                	Rússia, 							Krasnoyarsk						
E. Rozanov
Sankt-Petersburg State University
														Email: denisen@icm.krasn.ru
				                					                																			                												                	Rússia, 							St Petersburg						
K. Belyuchenko
West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
														Email: denisen@icm.krasn.ru
				                					                																			                												                	Rússia, 							Kaliningrad						
F. Bessarab
West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
														Email: denisen@icm.krasn.ru
				                					                																			                												                	Rússia, 							Kaliningrad						
K. Golubenko
Oulu University
														Email: denisen@icm.krasn.ru
				                					                																			                												                	Finlândia, 							Oulu						
M. Klimenko
West Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS
														Email: denisen@icm.krasn.ru
				                					                																			                												                	Rússia, 							Kaliningrad						
Bibliografia
- Golubkov G.V., Adamson S.O. et al. // Rus. J. Phys. Chem. B 2022. V. 16. № 3. P. 508. https://doi.org/10.1134/S1990793122030058
- Pulinets S., Ouzounov D., Karelin A., Boyarchuk K. Earthquake Precursors in the Atmosphere and Ionosphere. New Concepts. Dordrecht: Springer Nature, 2022.
- Xu T., Hu Y., Wu J. et al. // Adv. Space Res. 2011. V. 47. № 6. P. 1001; https://doi.org/10.1016/j.asr.2010.11.006
- Klimenko M.V., Klimenko V.V., Zakharenkova I.E. et al. // Adv. Space Res. 2011. V. 48. № 3. P. 488; https://doi.org/10.1016/j.asr.2011.03.040
- Harrison R.G., Aplin K.L., Rycroft M.J. // J. Atmos. Sol.-Terr. Phys. 2010. V. 72. № 5–6. P. 376; https://doi.org/10.1016/j.jastp.2009.12.004
- Denisenko V.V., Rycroft M.J., Harrison R.G. // Surv. Geophys. 2019. V. 40. № 1. P. 1; https://doi.org/10.1007/s10712-018-9499-6
- Denisenko V.V. Proc. VI Russ. Conf. Glob. Electr. Circ., Yaroslavl, 2023. P. 48.
- Molchanov O., Hayakawa M. Seismo-electromagnetics and related phenomena: history and latest results. Tokyo: TERRAPUB, 2008.
- Chengxun Y., Zhijian L. et al. // Rus. J. Phys. Chem. B 2022. V. 16. № 5. P. 955. https://doi.org/10.1134/S1990793122050189
- Larin I.K. // Rus. J. Phys. Chem. B 2022. V. 16. № 3. P. 492. https://doi.org/10.1134/S1990793122030083
- Brunelli B.E., Namgaladze A.A. Physics of the ionosphere. M.: Nauka, 1988.
- Nesterov S., Denisenko V., Boudjada M.Y., Lammer H. // Proc. 5th Int. Conf. Trigger Effects in Geosystems. Springer, Cham: 2019. P. 559; https://doi.org/10.1007/978-3-030-31970-0_59
- The Earth’s Electrical Environment. Washington, DC: The National Academies Press, 1986; https://doi.org/10.17226/898
- Golubenko K., Rozanov E., Mironova I., Karagodin A., Usoskin I. // Geophys. Res. Lett. 2020. V. 47. № 12. e2020GL088619; https://doi.org/10.1029/2020GL088619
- Klimenko V.V., Denisenko V.V., Klimenko M.V. // Rus. J. Phys. Chem. B 2022. V. 16. № 5. P. 1008. https://doi.org/10.1134/S1990793122050219
- Denisenko V.V., Pomozov E.V. // J. Comp. Tech. 2010. V. 15. P. 34. Mareev E.A. // Phys. Usp. 2010. V. 53. P. 504. https://doi.org/10.3367/UFNe.0180.201005h.0527
- Denisenko V.V., Rozanov E.V., Belyuchenko K.V. et al. // Proc. VIII Int. Conf. “Atmosphere, Ionosphere, Safety (AIS-2023)”. Kaliningrad, 2023. P. 117.
- Schraner M., Rozanov E., Schnadt Poberaj C. et al. // Atmosph. Chem. Phys. 2008. V. 8. № 19. P. 5957; https://doi.org/10.5194/acp-8-5957-2008
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




