Regularities of the formation of cool-flame oxidation products of rich propane-oxygen mixtures in a two-section reactor
- Authors: Poghosyan N.M.1, Poghosyan M.D.1, Davtyan A.H.1, Arsentev S.D.1, Strekova L.N.2, Arutyunov V.S.2
- 
							Affiliations: 
							- Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia
- Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
 
- Issue: Vol 43, No 5 (2024)
- Pages: 68-77
- Section: Chemical physics of biological processes
- URL: https://cardiosomatics.ru/0207-401X/article/view/674949
- DOI: https://doi.org/10.31857/S0207401X24050081
- ID: 674949
Cite item
Abstract
The effect of the ratio of the reagents on a stabilized cool flame of rich propane-oxygen mixtures is investigated. It was found that with an increase in the initial concentration of propane in the mixture, its consumption, as well as the concentration of propylene, has a maximum a ratio of C3H8 : O2 = 1 : 1. In this case, the selectivity of propylene formation reaches a maximum a ratio of C3H8 : O2 = 4 : 1. It is shown that an increase in the initial propane concentration in the mixture increases the yield of methane, but reduces the yield of propylene, ethylene, hydrogen, CO, CO2, methanol, formaldehyde and acetaldehyde. At a ratio of C3H8 : O2 = 6 : 1, ethane was also found in the reaction products. The possibility of ethanol formation in the reactions of ethoxyl and hydroxyethyl radicals with acetaldehyde has been analyzed using the CBS-QB3 quantum-chemical method.
Keywords
Full Text
 
												
	                        About the authors
N. M. Poghosyan
Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia
														Email: strekova@bk.ru
				                					                																			                												                	Armenia, 							Yerevan						
M. Dj. Poghosyan
Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia
														Email: strekova@bk.ru
				                					                																			                												                	Armenia, 							Yerevan						
A. H. Davtyan
Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia
														Email: strekova@bk.ru
				                					                																			                												                	Armenia, 							Yerevan						
S. D. Arsentev
Nalbandyan Institute of Chemical Physics, National Academy of Sciences of Republic of Armenia
														Email: strekova@bk.ru
				                					                																			                												                	Armenia, 							Yerevan						
L. N. Strekova
Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
							Author for correspondence.
							Email: strekova@bk.ru
				                					                																			                												                	Russian Federation, 							Moscow						
V. S. Arutyunov
Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences
														Email: strekova@bk.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Poghosyan N.M., Poghosyan M.D., Shapovalova O.V. et al. Technologiacal Combustion / Ed. Aldoshin S.M., Alimov M.I., Arutyunov V.S. et al. Moscow: Russian Academy of Sciences, 2018. P. 114. https://doi.org/10.31857/S9785907036383000005
- Poghosyan N.M., Poghosyan M.D., Strekova L.N. et al. // Russ. J. Phys. Chem. B. 2015. V. 9(2). P. 218. https://doi.org/10.1134/S1990793115020104
- Poghosyan N.M., Poghosyan M.D., Arsentiev S.D. // Russ. J. Phys. Chem. B. 2015. V. 9(2). P. 231. https://doi.org/10.1134/S199079311502027X
- Grigoryan R.R., Arsentev S.D. // Pet. Chem. 2020. V. 60. № 2. P. 187. https://doi.org/10.1134/S096554412002005X
- Pogosyan N.M., Pogosyan M.Dj., Arsentiev S.D. et al. // Petr. Chem. 2020. V. 60. № 3. P. 316. https://doi.org/10.1134/S0965544120030172
- Arsentev S.D., Tavadyan L.A., Bryukov M.G. et al. // Russ. J. Phys. Chem. B. 2022. V. 16(6). P. 1019. https://doi.org/10.1134/S1990793122060021
- Palankoeva A.S., Belyaev A.A., Arutyunov V.S. // Russ. J. Phys. Chem. B. 2022. V. 16(3). P. 399. https://doi.org/10.1134/S1990793122030204
- Bryukov M.G., Belyaev A.A., Zakharov A.A. et al. // Kinetics and Catalysis. 2022. V. 63(6). P. 653. https://doi.org/10.1134/S0023158422060039
- Shtern V.Ya. Oxidation of Hydrocarbons. Oxford, London, New York: Pergamon Press, 1964.
- Prettre M. // Bul. Soc. Chim. Fr. 1932. Ser. 4. V. 41. № 9. P. 1132.
- Knox J.H., Norrish R.G.W. // Trans. Far. Soc. 1954. V. 50. № 9. P. 928.
- Hughes R., Simmons R.F. // Combust and Flame. 1970. V. 14. № 1. P. 103.
- Ouellet L., Leger E., Ouellet C. // J. Chem. Phys. 1950. V. 18. P. 383. https://doi.org/10.1063/1.1747636
- Unusual “cool flames” discovered aboard International Space Station. https://new.nsf.gov/news/unusual-cool-flames-discovered-aboard
- Lin K.C., Chiu Ch.-T. // Fuel. 2017. V. 203. P. 102. http://dx.doi.org/10.1016/j.fuel.2017.04.064
- Liu J., Yu R., Ma B. // ACS Omega 2020. V. 5. P. 16448.
- Titova N.S., Kuleshov P.S., Starik A.M. // Combust. Explosion, Shock Waves. 2011. V. 47. № 3. P. 249. https://doi.org/10.1134/S0010508211030014
- Poghosyan N.M., Poghosyan M.D., Arsentev S.D. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 5. P. 1130. https://doi.org/10.31857/S0207401X2309008X
- Mantashyan A.A. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 233. https://doi.org/10.1134/S1990793121020214
- Troshin K.Ya., Rubtsov N.M., Tsvetkov G.I. // Russ. J. Phys. Chem. B. 2022. V. 16(1). P. 39. https://doi.org/10.1134/S199079312201016X
- Mantashyan A.A., Gukasyan P.S. // Dokl. Acad. Nauk USSR. 1977. V. 234(2). P. 379.
- Mantashyan A.A., Gukasyan P.S., Sayadyan R.H. // React. Kinet. Cat. Lett. 1979. V. 11. P. 225. https://doi.org/10.1007/BF02067830
- Pogosyan M.J., Aliev R.K., Mantashyn A.A. // React. Kinet. Cat. Lett. 1985. V. 27. № 2. P. 437. https://doi.org/10.1007/BF02070490
- Simonyan T.R., Mantashyan A.A. // React. Kinet. Cat. Lett. 1981. V. 17. № 3–4. P. 319.
- Simonyan T.R., Mantashyan A.A. // Arm. Khim. Zhurn. 1979. V. 32(10). P. 757.
- Carlier M., Sochet L.-R. // Combust and Flame. 1978. V. 33. № 1–4. P. 1. https://doi.org/10.1016/0010-2180(78)90039-1
- Pauwels J.F., Carlier M., Devolder P., Sochet L.-R. // Ibid. 1990. V. 82. № 2. P. 163. https://doi.org/10.1016/0010-2180(90)90095-9
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman, J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 16. Rev. C.01, Wallingford CT: Gaussian, Inc., 2016.
- Dennington R., Keith T.A., Millam J.M. GaussView. Ver. 6.1, Shawnee Mission, KS: Semichem Inc., 2019.
- Grigoryan R.R., Aresnt’ev S.D., Mantashyan A.A. // Combustion, Explosion, and Shock Waves. 1981. V. 17(3). P. 272. https://doi.org/10.1007/BF00751298
- Poladyan E.A., Grigoryan G.L., Khachatryan L.A., Mantashyan A.A. // Kinet. Katal. 1976. V. 17(2). P. 304.
- Grigoryan R.R., Arsentev S.D., Mantashyan A.A. // Chemistry and Chemical Technology. 1983. V. 2. P. 15.
- Mantashyan A.A. // Chem. Phys. Reports. 1996. V. 15(4). P. 545.
- Mantashyan A.A. Khachatryan L.A. Niazyan O.M., Arsentyev S.D. // Combust. and Flame. 1981. V. 43. P. 221. https://doi.org/10.1016/0010-2180(81)90022-5
- Hippler H., Striebel F., Viskolcz B. // Phys. Chem. Chem. Phys. 2001. V. 3. № 12. P. 2450; https://doi.org/10.1039/B101376I
- Xu Z.F., Xu K., Lin M.C. // ChemPhysChem. 2009. V. 10. P. 972. https://doi.org/10.1002/cphc.200800719
- Zhang Y., Zhang S.W., Li Q.S. // Chem. Phys. 2004. V. 296. P. 79. https://doi.org/10.1016/J.CHEMPHYS.2003.09.030
- Mantashyan A.A., Arsentev S.D. // Kinetika i kataliz. 1981. V. 22(4). P. 898.
- Mantashyan A.A., Arsentev S.D. // Kinetika i kataliz. 1981. V. 22(6). P. 1389.
- Morris E.D., Stedman D.H., Niki H. // J. Amer. Chem. Soc. 1971. V. 93. № 15. P. 3570.
- Meagher J.F., Heicklen J. // J. Phys. Chem. 1976. V. 80. № 15. P. 1645.
- Davtyan A.H., Manukyan Z.H., Arsentev S.D. et al. // Russ. J. Phys. Chem. B. 2023. V. 17(2). P. 336. https://doi.org/10.1134/S1990793123020239
- Williams A.E., Hammer N.I., Tschumper G.S. // J. Chem. Phys. 2021. V. 155. № 114306. https://doi.org/10.1063/5.0062809
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted





