Physicochemical properties of disperse-filled ethylene-octene copolymer
- Authors: Myasoedova V.V.1, Golobokov D.A.2
- 
							Affiliations: 
							- Federal Research Center of Chemical Physics named after N.N. Semenov, Russian Academy of Sciences
- University of Science and Technology “MISIS”
 
- Issue: Vol 43, No 5 (2024)
- Pages: 85-92
- Section: Chemical physics of polymeric materials
- URL: https://cardiosomatics.ru/0207-401X/article/view/674951
- DOI: https://doi.org/10.31857/S0207401X24050109
- ID: 674951
Cite item
Abstract
The article is aimed at developing innovations in the field of hybrid polymer nanomaterials and investigating their structural, thermodynamic, and physico-mechanical properties. Filling the ethylene-octene copolymer with Ni nanoparticles as well as basalt scales increases the elasticity of the composite by a 25% and also causes an increase in strength by a 15%. Obtained results open possibility to evaluate influence of chemical nature, sizes and content of different kinds of fillers for improvement thermostability and elasticity of the new hybrid polymer nanomaterials.
Full Text
 
												
	                        About the authors
V. V. Myasoedova
Federal Research Center of Chemical Physics named after N.N. Semenov, Russian Academy of Sciences
							Author for correspondence.
							Email: veravm777@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
D. A. Golobokov
University of Science and Technology “MISIS”
														Email: veravm777@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Trakhtenberg L.I., Ikim M.I., Ilegbusi O.J. et al. // Chemosensors. 2023. V. 11. № 6. P. 320. https://doi.org/10.3390/ chemosensors11060320
- Kozhushner M.A., Trakhtenberg L.I., Bodneva V.L. et al. // J. Phys. Chem. C. 2014. V. 118. № 21. P. 11440. https://doi.org/10.1021/jp501989k
- Trakhtenberg L.I., Gerasimov G.N., Grigor’ev E.I. // Russ. J. Phys. Chem. A. 1999. V. 73. P. 209.
- Zhukov A.M., Solodilov V.I., Tretyakov I.V. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 926. https://doi.org/10.1134/S199079312205013X
- Guymon G.G., Malakooti M.H. // J. Polym. Sci. 2022. V. 60. № 8. P. 1300. https://doi.org/10.1002/pol.20210867
- Nesmelov A.A., Zavyalov S.A., Malakhov S.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 826.
- Trzepieci’nski T., Najm S.M., Sbayti M. et al. // J. Compos. Sci. 2021. V. 5. № 8. P. 217. https://doi.org/10.3390/jcs5080217
- Tran V.V., Nu T.T.V., Jung H.-R. et al. // Polymers. 2021. V. 13. № 18. P. 3031. https://doi.org/10.3390/polym13183031
- Aloev V.Z., Zhirikova Z.M., Tarchokova M.A. // ChemChemTech. 2020. V. 63. P. 81. https://doi.org/10.6060/ivkkt.20206304.6158
- Li Z., Wu W., Chen H. et al. // Roy. Soc. Chem. Adv. 2013. V. 3. P. 6417. https://doi.org/10.1039/c3ra22482a
- Lebedeva E.A., Astafieva S.A., Trukhinov D.K. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 191. https://doi.org/10.1134/S1990793123010244
- Myasoedova V., Zakharova E., Vasiljev I. // Annals DAAAM Proc. Intern. DAAAM Sympos. 2021. V. 32. P. 177. https://doi.org/10.2507/32nd.daaam.proceedings.027
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted









