Adaptation of the Kinetical Scheme to Ethylene Combustion Conditions at Temperatures Above 1200 K
- 作者: Filimonova E.A.1, Dobrovolskaya A.S.1
- 
							隶属关系: 
							- Joint Institute for High Temperatures of Russian Academy of Sciences
 
- 期: 卷 42, 编号 12 (2023)
- 页面: 39-47
- 栏目: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/675009
- DOI: https://doi.org/10.31857/S0207401X23120051
- EDN: https://elibrary.ru/TWVUYR
- ID: 675009
如何引用文章
详细
In the paper authors present original methods for analyzing the kinetic scheme and reaction rate
constants for calculation of the ignition delay time and the laminar velocity of the combustion wave for
C2H4–O2–Ar and C2H4-air mixtures. The kinetic scheme under consideration will further be applied in
problems of plasma-assisted combustion in a supersonic flow using a discharge. After made changes to the
reaction system, a good agreement between the calculation results and experimental data was obtained.
作者简介
E. Filimonova
Joint Institute for High Temperatures of Russian Academy of Sciences
														Email: helfil@mail.ru
				                					                																			                												                								Moscow, Russia						
A. Dobrovolskaya
Joint Institute for High Temperatures of Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: helfil@mail.ru
				                					                																			                												                								Moscow, Russia						
参考
- Leonov S.B. // Energies. 2018. № 11(7). 1733; https://doi.org/10.3390/en11071733
- Firsov A.A., Savelkin K.V., Yarantsev D.A., Leonov S.B. // Philos. Trans. R. Soc. London, Ser. A. 2015. V. 373. № 2048; https://doi.org/10.1098/rsta.2014.0337
- Фролов С.М., Иванов В.С. // Хим. физика. 2021. Т. 40. № 4. С. 68; https://doi.org/10.31857/S0207401X21040075
- Deak N., Bellemans A., Bisetti F. // Proc. Combust. Inst. 2021. V. 38. P. 6551; https://doi.org/10.1016/j.proci.2020.06.126
- Kosarev I.N., Kindysheva S.V., Momot R.M. et al. // Combust. and Flame. 2016. V. 165. P. 259; https://doi.org/10.1016/j.combustflame.2015.12.011
- Tsolas N., Yetter R.A. // Ibid. 2017. V. 176. P. 534; https://doi.org/10.1016/j.combustflame.2016.10.022
- Bityurin V.A., Bocharov A.N., Filimonova E.A., Klimov A.I. // Proc. 15 Intern. Conf. on Gas Discharges and their Applications / Ed. Bordage et al. Toulouse: GD Local Organizing Committee, 2004. P. 973.
- Filimonova E.A. // J. Phys. D: Appl. Phys. 2015. V. 48. 015201; https://doi.org/10.1088/0022-3727/48/1/015201
- Филимонова Е.А., Амиров Р.Х. // Физика плазмы. 2001. Т. 27. № 8. С. 750.
- Filimonova E.A., Kim Y., Hong S.H., Song Y.H. // J. Phys. D: Appl. Phys. 2002. V. 35. P. 2795.
- Железняк М.Б., Филимонова Е.А. // Теплофизика высоких температур. 1998. Т. 36. №. 4. С. 557.
- Филимонова Е.А., Амиров Р.Х., Ким Х.Т., Парк И.Х. // Хим. физика. 2000. Т. 19. №. 9. С. 75.
- Filimonova E., Bocharov A. Bityurin V. // Fuel. 2018. V. 228. P. 309.https://doi.org/10.1016/j.fuel.2018.04.124
- Manion J.A., Huie R.E., Levin R.D. et al. NIST Chemical Kinetics Database, NIST Standard Reference Database 17. Ver. 7.0 (Web Version). Release 1.6.8. Data version 2015.09. Gaithersburg, Maryland: National institute of standards and technology, 2018; https://kinetics.nist.gov/kinetics/
- Басевич В.Я., Веденеев В.И., Фролов С.М., Романович Л.Б. // Хим. физика. 2006. Т. 25. № 11. С. 87.
- Baker J.A., Skinner G.B. // Combust. and Flame. 1972. V. 19. P. 347.
- Hidaka Y., Nishimori T., Sato K. et al. // Ibid. 1999. V. 117. P. 755.
- Brown C.J., Thomas, G.O. // Ibid. 1999. V. 117. P. 861.
- Wang H., Davis S.G., Laskin A., Egolfopoulos F., Law C.K. USC Mech Ver. II. High-Temperature Combustion Reaction Model of H2/CO/C1–C4 Compounds, 2007; https://ignis.usc.edu:80/Mechanisms/USC-Mech%20II/ USC_Mech%20II.htm
- Битюрин В.А., Бочаров А.Н. // Изв. РАН. МЖГ. 2006. № 5. С. 188.
- Kiverin A.D., Minaev K.O., Yakovenko I.S. // Combust. and Flame. 2020. V. 221. P. 420; https://doi.org/10.1016/j.combustflame.2020.08.013
- Михалкин В.Н., Сумской С.И., Тереза А.М. и др. // Хим. физика. 2022. Т. 41. № 8. С. 3; https://doi.org/10.31857/S0207401X2208009X
- Киверин А.В., Минаев К.О., Яковенко О.С. // Хим. физика. 2020. Т. 39. № 8. С. 16; https://doi.org/10.31857/S0207401X20080051
- Westbrook C.K., Dryer F.L., Schug K.E. // Proc. 19th Sympos. (Intern.) on Combust. Pittsburgh: The Combust. Inst., 1982. V. 19. № 1. P. 153.
- Konnov A.A., Mohammad A., Kishore V.R. et al. // Prog. Energy Combust. Sci. 2018. V. 68. P. 197; https://doi.org/10.1016/j.pecs.2018.05.003
- Egolfopoulos F.N., Zhu D.L., Law C.K. // Proc. 23th Sympos. (Intern.) on Combust. Pittsburgh: The Combust. Inst., 1991. V. 23. № 1. P. 471; https://doi.org/10.1016/S0082-0784(06)80293-6
- Hassan M.I., Aung K.T., Kwon K.C., Faeth G.M. // J. Propul. Power. 1994. V. 14. P. 479.
- Jomaas G., Zheng X.L., Zhu D.L., Law C.K. // Proc. Combust. Inst. 2006. V. 30. P. 193.
- Martz J.B., Lavoie G.A., Im H.G. et al. // Combust. and Flame. 2012. V. 159. P. 2077; https://doi.org/10.1016/j.combustflame.2012.01.011
- Тереза А.М., Агафонов Г.Л., Бетев А.С., Медведев С.П. // Хим. физика. 2020. Т. 39. № 12. С. 29; https://doi.org/10.31857/S0207401X20120158
- Филимонова Е.А. Кинетика процессов горения, конверсии оксидов азота и углеводородов, стимулированных наносекундными разрядами. Дис. … д-ра физ.-мат. наук. М.: ОИВТ РАН, 2021; https://jiht.ru/science/dissert-council/diss_texts/Filimonova.pdf
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					







