The Effect of the Turbulence Coefficient on the Formation of a Turbulent Process: 2. Existing Scenarios for the Occurrence and Development of Turbulence
- Autores: Lebed I.V.1
- 
							Afiliações: 
							- Institute of Applied Mechanics, Russian Academy of Sciences
 
- Edição: Volume 42, Nº 12 (2023)
- Páginas: 86-94
- Seção: Dynamics of transport processes
- URL: https://cardiosomatics.ru/0207-401X/article/view/675017
- DOI: https://doi.org/10.31857/S0207401X23120063
- EDN: https://elibrary.ru/JTFTBI
- ID: 675017
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Some characteristic features of three scenarios for the occurrence and development of turbulence
are presented: the Landau-Hopf scenario, the scenario of transition to turbulence on a strange attractor, and
the scenario followed by the solutions of the multimoment hydrodynamics equations. The analysis of the presented
characteristic features allows us to conclude that these scenarios can be used to interpret turbulence.
It is shown that only one of the scenarios satisfactorily interprets the experimental data: the scenario followed
by the solutions of the multimoment hydrodynamics equations supplemented with stochastic components.
The Landau-Hopf scenario leads to a system that has lost stability in the wrong direction. The scenario of the
transition to turbulence on a strange attractor correctly reproduces only the initial stage of the evolution of
the liquid layer in the Bénard experiment, namely, heat transfer in the resting layer and convective shafts.
Analysis of the behavior of solutions of the Lorentz model leaves no hope for the ability of this scenario to
interpret turbulence
Palavras-chave
Sobre autores
I. Lebed
Institute of Applied Mechanics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: lebed-ivl@yandex.ru
				                					                																			                												                								Moscow, Russia						
Bibliografia
- Бетев А.С., Киверин А.Д., Медведев С.П., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 12. С. 17.
- Sagaut P. Large Eddy Simulation for Incompressible Flows. N.Y.: Springer, 2006.
- Chekroun M.D., Simonnet E., Ghil M. // Physica D. 2011. V. 240. P. 1685.
- Carvalho J., Rodrigues A.A. // Physica D. 2022. V. 434. № 133268.
- Ruelle D., Takens F. // Commun. Math. Phys. 1971. V. 20. P. 167.
- Lebed I.V. The foundations of multimoment hydrodynamics. Pt. 1. N.Y.: Nova Sci. Publ., 2018.
- Kiselev A.Ph., Lebed I.V. // Chaos Solitons Fractals. 2021. V. 142. № 110491.
- Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 1. С. 79.
- Киселев А.Ф., Лебедь И.В. // Хим. физика. 2021. Т. 40. № 6. С. 80
- Лебедь И.В., Уманский С.Я. // Хим. физика. 2007. Т. 26. № 1. С. 65.
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986.
- Natarajan R., Acrivos A. // J. Fluid Mech. 1993. V. 254. P. 323.
- Tomboulides A.G., Orszag S.A. // Ibid. 2000. V. 416. P. 45.
- Hannemann K., Oertel Jr.H. // Ibid. 1989. V. 199: P. 55.
- Schuster H.G. Deterministic chaos. Weinheim: Physik Verlag, 1984.
- Никурадзе Г. // Проблемы турбулентности / Под ред. Великанова М.А., Шейковского Н.Т. Л.–М.: ОНТИ, 1936. С. 75–150.
- Chomaz J.M., Bonneton P., Hopfinger E.J. // J. Fluid Mech. 1993. V. 234. P.1.
- Sakamoto H., Haniu H. // Ibid. 1995. V. 287. P. 151.
- Лебедь И.В. // Хим. физика. 1997. Т. 16. № 7. С. 72.
- Лебедь И.В. // Хим. физика. 2014. Т. 33. № 4. С. 1.
- Лебедь И.В. // Хим. физика. 2022. Т. 41. № 1. С. 77.
- Лебедь И.В. // Хим. физика. 2022. Т. 41. № 4. С. 81.
- Лебедь И.В. // Хим. физика. 2023. Т. 42. № 9.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
