Photonics of bilirubin – biologically important molecule (Review)
- Authors: Tatikolov A.S.1, Panova I.G.2
- 
							Affiliations: 
							- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- International Scientific and Practical Center of Tissue Proliferation
 
- Issue: Vol 43, No 11 (2024)
- Pages: 3-9
- Section: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://cardiosomatics.ru/0207-401X/article/view/680972
- DOI: https://doi.org/10.31857/S0207401X24110011
- ID: 680972
Cite item
Abstract
Bilirubin, a bile pigment having photochemical activity, plays an important role in the body. Photonics (photophysics and photochemistry) of bilirubin has attracted scientific and practical interest of researchers up to the present day. This is because its molecule is capable of ultrafast photoisomerization processes, and also contains two interacting dipyrromethenone chromophores. Furthermore, the photochemical reactions of bilirubin are used in the widespread phototherapy of neonatal jaundice (neonatal hyperbilirubinemia), carried out to reduce the level of bilirubin in the body. This review briefly considers photonics of bilirubin, as well as its main photochemical reactions in phototherapy of neonatal hyperbilirubinemia.
Full Text
 
												
	                        About the authors
A. S. Tatikolov
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: tatikolov@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
I. G. Panova
International Scientific and Practical Center of Tissue Proliferation
														Email: tatikolov@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- S.Y. Kim and S.C. Park, Front. Pharmacol. 3, 45 (2012). https://doi.org/10.3389/fphar.2012.00045
- E. Sticova and M. Jirsa, World J. Gastroenterol. 19, 6398 (2013). https://doi.org/10.3748/wjg.v19.i38.6398
- S. Itoh, H. Okada, K. Koyano, S. Nakamura, Y. Konishi, T. Iwase, and T. Kusaka, Front. Pediatr. 10, 1002408 (2023). https://doi.org/10.3389/fped.2022.1002408
- D.A. Lightner and A.F. McDonagh, Acc. Chem. Res. 17, 417 (1984). https://doi.org/10.1021/ar00108a002
- C.P. Soto Conti, Arch. Argent. Pediatr. 119, No. 1, e18 (2021). http://dx.doi.org/10.5546/aap.2021.eng.e18
- J.F. Creeden, D.M. Gordon, D.E. Stec, and T.D. Hinds Ir, Am. J. Physiol. Endocrinol. Metab. 320, E191 (2021). https://doi.org/10.1152/ajpendo.00405.2020
- A.A. Lamola, Effects of environment on photophysical processes of bilirubin. In: Optical Properties and Structure of Terrapyrroles. Edited by G. Blauer and H. Sund. Walter de Gruyter, Berlin, 1985, p. 311–326.
- D.A. Lightner, J.K. Gawronski, and W.M.D. Wijekoon, J. Am. Chem. Soc. 109, No. 21, 6354 (1987). https://doi.org/10.1021/ja00255a020
- A.F. McDonagh and D.A. Lightner, Pediatrics 75, 443 (1985). https://doi.org/10.1542/peds.75.3.443
- A.F. McDonagh and D.A. Lightner, Semin. Liver Dis. 8, 272 (1988). https://doi.org/10.1055/s-2008-1040549
- J.E. Ennever, Pediatr. Clin. North Am. 33, 603 (1986). https://doi.org/10.1016/S0031-3955(16)36045-X
- D.A. Lightner, M. Reisinger, and G.L. Landen, J. Biol. Chem. 261, No. 13, 6034 (1986). https://doi.org/10.1016/S0021-9258(17)38489-2
- M. Taniguchi and J.S. Lindsey, J. Photochem. Photobiol. C 55, 100585 (2023). https://doi.org/10.1016/j.jphotochemrev.2023.100585
- A.A. Lamola and J. Flores, J. Am. Chem. Soc. 104, No. 9, 2530 (1982). https://doi.org/10.1021/ja00373a033
- B. Zietz and T. Gillbro, J. Phys. Chem. B 111, 11997 (2007). https://doi.org/10.1021/jp073421c
- A.S. Vetchinkin, S.Ya. Umanskii, Yu.A. Chaikina, and A.I. Shushin, Russ. J. Phys. Chem. B 16, No. 5, 945 (2022). https://doi.org/10.1134/S1990793122050104
- D.R. Anfimov, I.S. Golyak, O.A. Nebritova, and I.L. Fufurin, Russ. J. Phys. Chem. B 16, No. 5, 834 (2022). https://doi.org/10.1134/s1990793122050165
- V. Gorokhov, P. Knox, B. Korvatovskiy, N.Kh. Seifullina, S.N. Goryachev, N.P. Grishanova, V.Z. Paschenko, and A. B. Rubin, Russ. J. Phys. Chem. B 17, No. 3, 571 (2023). https://doi.org/10.1134/S199079312303020X
- D.A. Cherepanov, G.E. Milanovsky, V.A. Nadtochenko, and A.Yu. Semenov, Russ. J. Phys. Chem. B 17, No. 3, 594 (2023). https://doi.org/10.1134/S1990793123030193
- C. Carreira-Blanco, P. Singer, R. Diller, and J.L.P. Lustres, Phys. Chem. Chem. Phys. 18, 7148 (2016). https://doi.org/10.1039/c5cp06971h
- H.P. Upadhyaya, J. Phys. Chem. A 122, No. 46, 9084 (2018). https://doi.org/10.1021/acs.jpca.8b09392
- R. Pu, Z. Wang, R. Zhu, J. Jiang, T.-C. Weng, Y. Huang, and W. Liu, J. Phys. Chem. Lett. 14, 809 (2023). https://doi.org/10.1021/acs.jpclett.2c03535
- E.J. Land, Photochem. Photobiol. 24, 475 (1976). https://doi.org/10.1111/j.1751-1097.1976.tb06857.x
- V.Yu. Plavskii, A.I. Tretyakova, L.G. Plavskaya, A.V. Mikulich, A.S. Stashevskii, A.S. Grabchikov, I.A. Khodasevich, and V.A. Orlovich, Molecular, membrane and cellular basis of the functioning of biosystems: Int. Scientific Conf. Tenth Congress of the Belarusian Public Association of Photobiologists and Biophysicists, June 19–21, 2012, Minsk, Belarus: Books of Art. in 2 books. Book 2. Editorial board: I.D. Volotovskii, S.N. Cherenkevich, et al. Minsk: Publishing house Center of BSU, 2012. P. 71, ISBN 978-985-553-356-7.
- R.W. Sloper and T.G. Truscott, Photoсhem. Photobiol. 35, 743 (1982). https://doi.org/10.1111/j.1751-1097.1982.tb02640.x
- K.L. Tan, Clin. Perinatol. 18, No. 3, 423 (1991). https://doi.org/10.1016/S0095-5108(18)30506-2
- F. Ebbesen, H.J. Vreman, and T.W.R. Hansen, Int. J. Mol. Sci. 24, 461 (2023). https://doi.org/10.3390/ijms24010461
- T.M. Slusher, H.J. Vreman, A.M. Brearley, Y.E. Vaucher, R.J. Wong, D.K. Stevenson, O.T. Adeleke, I.P. Ojo, G. Edowhorhu, T.C. Lund, and D.A. Gbadero, Lancet Glob. Health 6, e1122 (2018). http://dx.doi.org/10.1016/S2214-109X(18)30373-5
- S. Onishi, S. Itoh, and K. Isobe, Biochem. J. 236, 23 (1986). https://doi.org/10.1042/bj2360023
- S. Itoh, S. Onishi, K. Isobe, M. Manabe, and T. Yamakawa, Biol. Neonate 51, 10 (1987). https://doi.org/10.1159/000242625
- S. Itoh, H. Okada, T. Kuboi, and T. Kusaka, Pediatr. Intern. 59, 959 (2017). https://doi.org/10.1111/ped.13332
- Y. Uchida, Y. Morimoto, T. Uchiike, T. Kamamoto, T. Hayashi, I. Arai, T. Nishikubo, and Y. Takahashi, Early Human Dev. 91, 381 (2015). http://dx.doi.org/10.1016/j.earlhumdev.2015.04.010
- F. Ebbesen, P. Madsen, S. Støvring, H. Hundborg, and G. Agati, Acta Pædiatr. 96, 837 (2007). https://doi.org/10.1111/j.1651-2227.2007.00261.x
- F. Ebbesen, P.K. Vandborg, and M.L. Donneborg, Seminars in Perinatol. 45, 151358 (2021). https://doi.org/10.1016/j.semperi.2020.151358
- F. Ebbesen, M. Rodrigo-Domingo, A.M. Moeller, H.J. Vreman, and M.L. Donneborg, Pediatr. Res. 89, 598 (2021). https://doi.org/10.1038/s41390-020-0911-9
- F. Ebbesen, P.H. Madsen, P.K. Vandborg, L.H. Jakobsen, T. Trydal, and H.J. Vreman, Pediatr. Res. 80, 511 (2016). https://doi.org/10.1038/pr.2016.115
- A.A. Lamola, Clin. Perinatol. 43, No. 2, 259 (2016). http://dx.doi.org/10.1016/j.clp.2016.01.004
- V.K. Bhutani, Pediatrics. 128, e1046 (2011). www.pediatrics.org/cgi/doi/10.1542/peds.2011-1494
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted


