Structure, conductivity and sensor properties of NiO–In2O3 composites synthesis by different methods
- Authors: Ikim M.I.1, Erofeeva A.R.1, Spiridonova E.Y.1, Gromov V.F.1, Gerasimov G.N.1, Trakhtenberg L.I.1,2
- 
							Affiliations: 
							- Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
 
- Issue: Vol 44, No 1 (2025)
- Pages: 90-95
- Section: Chemical physics of nanomaterials
- URL: https://cardiosomatics.ru/0207-401X/article/view/683326
- DOI: https://doi.org/10.31857/S0207401X25010105
- ID: 683326
Cite item
Abstract
The effect of the synthesis method of NiO–In2O3 composites on their structural, conductive and sensory characteristics when detecting hydrogen was studied. Impregnation of indium oxide nanoparticles with a nickel nitrate salt and a hydrothermal method with aqueous solutions of the corresponding salts were used. It has been shown that during the impregnation process, nickel oxide is formed in the form of amorphous nanoparticles on the surface of indium oxide, and during hydrothermal treatment, nickel ions are introduced into In2O3 structures. In impregnated composites, the particle size of indium oxide does not depend on the composition and is 60 nm, while in hydrothermal composites it decreases from 35 to 30 nm with increasing nickel content. With an increase in nickel content from 0 to 3 wt.% for both synthesis methods, the conductivity decreases, and the resistance for hydrothermal samples is an order of magnitude higher than for impregnated ones. The sensory response was almost twice as high.
Full Text
 
												
	                        About the authors
M. I. Ikim
Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: ikimmary1104@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
A. R. Erofeeva
Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
														Email: ikimmary1104@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
E. Yu. Spiridonova
Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
														Email: ikimmary1104@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
V. F. Gromov
Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
														Email: ikimmary1104@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
G. N. Gerasimov
Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences
														Email: ikimmary1104@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
L. I. Trakhtenberg
Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences; Lomonosov Moscow State University
														Email: ikimmary1104@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
References
- Q. Li, W. Zeng, Y. Li. Sens. Actuators B. 359, 131579 (2022).
- C. Zhang, K. Xu, K. Liu, J. Xu, Z. Zheng, Coord. Chem. Rev. 472, 214758 (2022).
- K.G. Krishna, S. Parne, N. Pothukanuri, V. Kathirvelu, S. Gandi, D. Joshi. Sens. Actuators A. 341, 113578 (2022).
- L.I. Trakhtenberg, M.I. Ikim, O.J. Ilegbusi, V.F. Gromov, G.N. Gerasimov. Chemosens. 11, 320 (2023).
- S. Yan, W. Song, D. Wu, S. Jin, S. Dong, H. Hao, W. Gao, J. Alloys Compd. 896, 162887 (2022).
- M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg, Russ. J. Phys. Chem. B 17, 774 (2023).
- L.C. Jimenez, H.A. Mendez, B.A. Paez, M.E. Ramırez, H. Rodrıguez. Braz. J. Phys. 36, 1017 (2006).
- P. Prathap, D.G. Gowri, Y.P.V. Subbaiah, R.K.T. Ramakrishna, V. Ganesan // Current Appl. Phys. 8, 120 (2008).
- G.N. Gerasimov, V.F. Gromov, M.I. Ikim, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 15, 1072 (2021).
- X. Fan, Y. Xu, W. He. RSC advances. 11, 11215 (2021).
- Y. Zhang, J. Cao, Y. Wang. Vacuum. 202, 111149 (2022).
- Z. Jin, C. Wang, L. Wu, H. Song, X. Yao, J. Liu, F. Wang. Sens. Actuators B. 377, 133058 (2023).
- M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B 16, 1180 (2022).
- V.F. Gromov, M.I. Ikim, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 15, 1084 (2021).
- M.I. Ikim, E.Y. Spiridonova, V.F. Gromov, G.N. Gerasimov, L.I. Trakhtenberg. Russ. J. Phys. Chem. B. 18, 283 (2024).
- Y. Wang, M. Yao, R. Guan, Z. Zhang, J. Cao. J. Alloys Compd. 854, 157169 (2021).
- M.I. Ikim, V.F. Gromov, G.N. Gerasimov, E.Y. Spiridonova, A.R. Erofeeva, K.S. Kurmangaleev, L.I. Trakhtenberg. Micromachines. 14, 1685 (2023).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted

