Нанопористость полимерных мембран и соответствующих порошковых материалов по данным сорбции газов и аннигиляции позитронов
- Авторы: Шантарович В.П.1, Бекешев В.Г.1, Кевдина И.Б.1, Алентьев А.Ю.2
- 
							Учреждения: 
							- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук
 
- Выпуск: Том 44, № 5 (2025)
- Страницы: 88-94
- Раздел: Химическая физика наноматериалов
- URL: https://cardiosomatics.ru/0207-401X/article/view/683917
- DOI: https://doi.org/10.31857/S0207401X25050105
- ID: 683917
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
На основании данных, полученных методами аннигиляции позитронов и низкотемпературной сорбции газов (N2, CO₂), обсуждаются изменения нанопористости при отливке мембран из исходного полимерного материала – порошкообразного поли-2-6-диметил-фениленоксида (PPO) различной степени кристалличности (от полностью аморфного образца до 70%). Понятие нанопористость включает микропористость и мезопористость материалов с размером пор от нескольких ангстрем до нескольких десятков нанометров. Сравнение позитронных и сорбционных данных, а также результатов по коэффициентам проницаемости кислорода для сформированных мембран позволяет заключить, что при переходе от порошка к мембране микропористость в основном сохраняется, а мезопористость исчезает.
Ключевые слова
Полный текст
 
												
	                        Об авторах
В. П. Шантарович
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
							Автор, ответственный за переписку.
							Email: shant@chph.ras.ru
				                					                																			                												                	Россия, 							Москва						
В. Г. Бекешев
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: shant@chph.ras.ru
				                					                																			                												                	Россия, 							Москва						
И. Б. Кевдина
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: shant@chph.ras.ru
				                					                																			                												                	Россия, 							Москва						
А. Ю. Алентьев
Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук
														Email: shant@chph.ras.ru
				                					                																			                												                	Россия, 							Москва						
Список литературы
- Mogensen O.E. Positron Annihilation in Chemistry / Eds. Goldanskii V.I., Schaeffer E.P. Berlin – Heidelberg – New York: Springer-Verlag, 1995.
- Budd P.M., McKeown N.B., Fritsch D., Yampolskii Yu.P., Shantarovich V.P. // Membrane Gas Separation / Eds. Yampolskii Yu.P., Freeman B. 2010. P. 29.
- Weber M.H., Lynn K.G. // Principles and Applications of Positron and Positronium Chemistry / Eds. Jean Y.C., Mallon P.E., Schrader D.M. New Jersey – London – Singapore – Hong Kong: World Scientific, 2003. P. 167.
- Shantarovich V.P. // J. Polym. Sci. Part B: Polym. Phys. 2008. V. 46. P. 2485. https//doi.org/10.1002/polb.21602
- Consolati G., Nichetti D., Quasso E. // Polymers. 2023. V. 15. P. 3128. https:// doi.org/10.3390/polym15143128
- Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309.
- Brunauer S., Emmett P. H. // Ibid 1935. № 7. P. 1754.
- IUPAC Reporting physisorption data for gas/solid systems // Pure & Appl. Chem. 1985. V. 57. № 4. P. 603.
- Brunauer S. Deming L.S. Deming W.S. et al. // J. Amer. Chem. Soc. 1940. V. 62. P. 1723.
- Шантарович В.П., Бекешев В.Г., Кевдина И.Б., Густов В.В., Белоусова Э.В. // Химия высоких энергий. 2023. Т. 57. № 4. С. 260. https://doi.org/10.31857/S0023119323040137
- NOVAWIN2 V.2.1. Operating Manual. Great Britain: Quantachrome Instruments, 2004.
- Alentiev A.Yu., Levin I.S., Buzin V.I. et al. // Polymer. 2021. V. 226. 123804. https://doi.org/10.1016/j.polymer.2021.123804
- Alentiev A.Yu., Levin I.S., Belov N.A. et al. // Polymers. 2022. V. 14. № 1. Article 120. https://doi.org/10.3390/polym14010120
- Алентиев А.Ю., Чирков С.В., Никифоров Р.Ю. и др. // Мембраны и мембранные технологии 2022. Т. 12. № 1. С. 3. https://doi.org/10.1134/S2218117222010035
- Kirkegaard P., Pederson N.J., Eldrup M. PATFIT-88: A data processing system for positron annihilation spectra on the mainframe and personal computers, Risoe-M-2740, Risoe National Laboratory, DK-4000, Roskilde, Denmark, 1989.
- Tao S J. // J. Chem. Phys. 1972. V. 56. P. 5499.
- Eldrup V., Lightbody D., Sherwood J.N. // Chem. Phys. 1981. V. 63. P. 51. https://doi.org/10.1016/0301-0104(81)80307-2
- Song T., Zhang P., Zhang C. et al. // Macropor. Mesopor. Mater. 2022. V. 334. P. 111761. http://doi.org/10.1016/j.micromeso.2022. 111761
- Elmehalmey W.A., Azzam R.A., Hassan Y.S. et al. // ACS Omega. 2018. V. 3. P. 2757. http://doi.org/10.1021/acsomega.7b02080
- Guńko V.M., Laboda R., Skubishevska-Zieba J., Gawdzik B., Charmas B. // Appl. Surf. Science 2005. V. 252. № 3. P. 612. http://doi.org/10.1016/j.apsusc.2005.02075
- Zaleski R., Kierys A., Dziadosz M. et al. // RSC Adv. 2012. V. 2. P. 3729.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 





