Exciton Binding Energies in Biphenyl Derivatives with Ferrocenyl and Fluorine-Containing Germyl Substituents
- Авторлар: Alyoshin D.A.1, Ermolaev N.L.1, Panteleev S.V.1, Suleymanov E.V.1, Ignatov S.K.1
- 
							Мекемелер: 
							- Lobachevsky Nizhny Novgorod State University
 
- Шығарылым: Том 44, № 6 (2025)
- Беттер: 30-42
- Бөлім: СТРОЕНИЕ ХИМИЧЕСКИХ СОЕДИНЕНИЙ, КВАНТОВАЯ ХИМИЯ, СПЕКТРОСКОПИЯ
- URL: https://cardiosomatics.ru/0207-401X/article/view/686502
- DOI: https://doi.org/10.31857/S0207401X25060029
- ID: 686502
Дәйексөз келтіру
Аннотация
To increase the efficiency of organic photovoltaic devices, it is necessary to search for new promising compounds that provide efficient charge separation during absorption in the optical region of the spectrum. As such compounds, biphenyl derivatives with ferrocenyl and fluorine-containing germyl substituents have been studied in the present work. The DFT and TD-DFT methods (B3LYP, CAM-B3LYP, PBE0, wB97XD) have been used to study the structures and energies of excited states of these derivates and to estimate the exciton binding energies in materials based on them in vacuum and condensed matter. For a number of compounds, the obtained exciton binding energies are close to zero, and in a separate case even less than zero, which demonstrates the prospect of their synthesis and use.
Негізгі сөздер
Толық мәтін
 
												
	                        Авторлар туралы
D. Alyoshin
Lobachevsky Nizhny Novgorod State University
							Хат алмасуға жауапты Автор.
							Email: aleshindan2@gmail.com
				                					                																			                												                	Ресей, 							Nizhny Novgorod						
N. Ermolaev
Lobachevsky Nizhny Novgorod State University
														Email: aleshindan2@gmail.com
				                					                																			                												                	Ресей, 							Nizhny Novgorod						
S. Panteleev
Lobachevsky Nizhny Novgorod State University
														Email: aleshindan2@gmail.com
				                					                																			                												                	Ресей, 							Nizhny Novgorod						
E. Suleymanov
Lobachevsky Nizhny Novgorod State University
														Email: aleshindan2@gmail.com
				                					                																			                												                	Ресей, 							Nizhny Novgorod						
S. Ignatov
Lobachevsky Nizhny Novgorod State University
														Email: aleshindan2@gmail.com
				                					                																			                												                	Ресей, 							Nizhny Novgorod						
Әдебиет тізімі
- Milichko V.A., Shalin A.S., Mukhin I.S. et al. // Usp. Fiz. Nauk. 2016. V. 186. № 8. P. 801. https://doi.org/10.3367/UFNr.2016.02.037703
- Scharber M.C. // Adv. Mater. 2016. V. 28. № 10. P. 1994. https://doi.org/10.1002/adma.201504914
- Hou J., Inganäs O., Friend R.H. et al. // Nat. Mater. 2018. V. 17. № 2. P. 119. https://doi.org/10.1038/nmat5063
- Zhang G., Lin F.R., Qi F. et al. // Chem. Rev. 2022. V. 122. № 18. P. 14180. https://doi.org/10.1021/acs.chemrev.1c00955
- Price M.B., Hume P.A., Ilina A. et al. // Nat. Commun. 2022. V. 13. № 1. P. 2827. https://doi.org/10.1038/s41467-022-30127-8
- Zhang X.-X., Yu X.-F., Xiao B. // J. Phys. Chem. A. 2023. V. 127. № 44. P. 9291. https://doi.org/10.1021/acs.jpca.3c06000
- Solak E.K., Irmak E. // RSC Adv. 2023. V. 13. № 18. P. 12244. https://doi.org/10.1039/D3RA01454A
- Al-Taher A.H., Al-Badry L.F., Semiromi E.H. // Russ. J. Phys. Chem. B. 2021. V. 15. № S1. P. S1. https://doi.org/10.1134/S1990793121090025
- Yu Q.-C., Fu W.-F., Wan J.-H. et al. // ACS Appl. Mater. Interfaces. 2014. V. 6. № 8. P. 5798. https://doi.org/10.1021/am5006223
- Brédas J.-L., Norton J.E., Cornil J. et al. // Acc. Chem. Res. 2009. V. 42. № 11. P. 1691. https://doi.org/10.1021/ar900099h
- Lemaur V., Steel M., Beljonne D. et al. // J. Amer. Chem. Soc. 2005. V. 127. № 16. P. 6077. https://doi.org/10.1021/ja042390l
- Kaake L.G., Jasieniak J.J., Bakus R.C. et al. // Ibid. 2012. V. 134. № 48. P. 19828. https://doi.org/10.1021/ja308949m
- Vandewal K., Mertens S., Benduhn J., Liu Q. // J. Phys. Chem. Lett. 2020. V. 11. № 1. P. 129. https://doi.org/10.1021/acs.jpclett.9b02719
- Lukin L.V. // Russ. J. Phys. Chem. B. 2023. V. 17. № 6. P. 1300. https://doi.org/10.1134/S1990793123060180
- Kronik L., Neaton J.B. // Annu. Rev. Phys. Chem. 2016. V. 67. № 1. P. 587. https://doi.org/10.1146/annurev-physchem-040214- 121351
- Dimitriev O.P. // Chem. Rev. 2022. V. 122. № 9. P. 8487. https://doi.org/10.1021/acs.chemrev.1c00648
- Gorokhov V.V., Knox P.P., Korvatovsky B.N. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 571. https://doi.org/10.1134/S199079312303020X
- Cherepanov D.A., Milanovsky G.E., Aybush A.V. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 584. https://doi.org/10.1134/S1990793123030181
- Bazlov S.V., Feskov S.V., Ivanov A.I. // Russ. J. Phys. Chem. B. 2017. V. 11. № 2. P. 242. https://doi.org/10.1134/S1990793117020026
- Cherepanov D.A., Milanovsky G.E., Nadtochenko V.A. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 3. P. 594. https://doi.org/10.1134/S1990793123030193
- Ermolaev N.L., Lenin I.V., Fukin G.K. et al. // J. Organomet. Chem. 2015. V. 797. P. 83. https://doi.org/10.1016/j.jorganchem.2015.07.027
- Ermolaev N.L., Fukin G.K., Shavyrin A.S. et al. // Ibid. 2023. V. 983. P. 122535. https://doi.org/10.1016/j.jorganchem.2022.122535
- Chuhmanov E.P., Ermolaev N.L., Plakhutin B.N., Ignatov S.K. // Comput. Theor. Chem. 2018. V. 1123. P. 50. https://doi.org/10.1016/j.comptc.2017.11.007
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian 09, Revision A.01. Wallingford CT: Gaussian Inc., 2009.
- Tomasi J., Mennucci B., Cammi R. // Chem. Rev. 2005. V. 105. № 8. P. 2999. https://doi.org/10.1021/cr9904009
- Lu T., Chen F. // J. Comput. Chem. 2012. V. 33. № 5. P. 580. https://doi.org/10.1002/jcc.22885
- Gregg B.A. // J. Phys. Chem. B. 2003. V. 107. № 20. P. 4688. https://doi.org/10.1021/jp022507x
- Hains A.W., Liang Z., Woodhouse M.A. et al. // Chem. Rev. 2010. V. 110. № 11. P. 6689. https://doi.org/10.1021/cr9002984
- Sun H., Hu Z., Zhong C. et al. // J. Phys. Chem. C. 2016. V. 120. № 15. P. 8048. https://doi.org/10.1021/acs.jpcc.6b01975
- Benatto L., Koehler M. // Ibid. 2019. V. 123. № 11. P. 6395. https://doi.org/10.1021/acs.jpcc.8b12261
- Zhu L., Yi Y., Wei Z. // Ibid. 2018. V. 122. № 39. P. 22309. https://doi.org/10.1021/acs.jpcc.8b07197
- Bredas J.-L. // Mater. Horiz. 2014. V. 1. № 1. P. 17. https://doi.org/10.1039/C3MH00098B
- Zhu L., Zhang J., Guo Y. et al. // Angew. Chem. 2021. V. 133. № 28. P. 15476. https://doi.org/10.1002/ange.202105156
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді







