Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field
- Autores: Bodneva V.L.1, Kozhushner M.A.1, Lidskii B.V.1, Posvyanskii V.S.1, Trakhtenberg L.I.1,2
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Moscow State University
 
- Edição: Volume 42, Nº 7 (2023)
- Páginas: 3-9
- Seção: XXXIV СИМПОЗИУМ “СОВРЕМЕННАЯ ХИМИЧЕСКАЯ ФИЗИКА” (СЕНТЯБРЬ 2022 г., ТУАПСЕ)
- URL: https://cardiosomatics.ru/0207-401X/article/view/674846
- DOI: https://doi.org/10.31857/S0207401X2307004X
- EDN: https://elibrary.ru/YAYSGJ
- ID: 674846
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
This study discusses the conditions for the occurrence of two-dimensional superconductivity under the action of an electric field on an La2 – xSrxCuO4 plate at a temperature lower than the maximum temperature of the superconducting transition, but when the concentration of charge carriers falls outside the superconductivity range. The study is carried out for a lanthanum-strontium cuprate plate at various hole concentrations, as well as temperature, and potential differences. A quasi-two-dimensional superconducting layer arises near the surface of the plate. The thickness of the superconducting layer is several angstroms and independent of the field strength in the range investigated. The thickness depends only on the concentration of holes and temperature. In addition, the distance of the superconducting layer from the edge of the plate is found to be a function of all three factors. The conditions used for conducting the experiment are also formulated.
Palavras-chave
Sobre autores
V. Bodneva
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
M. Kozhushner
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
B. Lidskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
V. Posvyanskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia						
L. Trakhtenberg
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Moscow State University
							Autor responsável pela correspondência
							Email: litrakh@gmail.com
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
Bibliografia
- Bednorz J.G., Müller K. A. // Z. Phys. B. 1986. V. 4. P. 189.
- Keimer B., Kivelson S.A., Norman M.R. et al. // Nature. 2015. V. 518. P. 179.
- Yoshida T., Zhou X.J., Lu D.H. et al. // J. Phys.: Cond. Matt. 2007. V. 19. P. 125209.
- Rice T.M. // Phys. Rev. A. 1965. V. 140. P. 1889.
- Reyren N., Thiel S., Caviglia A.D. et al. // Science. 2007. V. 317. P. 1196.
- Brun C., Cren T., Cherkez V. et al. // Nature Phys. 2014. V. 10. P. 444.
- Uchihashi T. // Supercond. Sci. Tekhnol. 2016. V. 30. P. 1.
- Uchihashi T., Yoshizava S., Minamitami E. et al. // Molec. Syst. Des. Eng. 2019. V. 4. P. 511.
- Садовский М.В. // УФН. 2016. Т. 186. С. 1035.
- Pavlov D.P., Zagidullin R.R., Mikhailov V.M. et al. // Phys. Rev. Lett. 2019. V. 122. P. 237001.
- Glover R.E., Sherill M.D. // Phys. Rev. Lett. 1960. V. 5. P. 248.
- Shkuratov S.I. // J. Vac. Sci. Technol. 1993. V. 11. P. 353.
- Sakai S. // Phys. Rev. B. 1993. V. 47. P. 9042.
- Moravets K. // Ibid. 2002. V. 66. P. 172508.
- Konsin P., Sorkin B. // Ibid. 1998. V. 58. P. 5795.
- Ahn C.H., Triscone J.-M., Mannhart J. // Nature. 2003. V. 424. P. 1015.
- Галашев А.Е., Рахманова О.Р., Катин К.П. и др. // Хим. физика. 2020. Т. 39. № 11. С. 80.
- Симбирцева Г.В., Пивень Н.П., Бабенко С.Д. // Хим. физика. 2020. Т. 39. № 12. С. 60.
- Val’kov V.V., Dzebisashvili D.M., Barabanov A.F. // Phys. Lett. A. 2015. V. 379. № 5. P. 421.
- Вальков В.В., Дзебисашвили Д.М., Барабанов А.Ф. // Письма ЖЭТФ. 2016. Т. 104. С. 745.
- Ландау Л.Д., Лифшиц Е.М. Статистическая физика. М.: Наука, 1995.
- Ландау Л.Д., Лифшиц Е.М. Электродинамика сплошных сред. М.: Наука, 1982.
- Gelfand I.M., Fomin S.V. Calculus of variations. N.J.: Prentice-Hall, Inc., Englewood Cliffs, 1963.
- Годунов C.К., Рябенький В.С. Разностные схемы. М.: Наука, 1977.
- Takagi H., Cava R.J., Marezio M. et al. // Phys. Rev. Lett. 1992. V. 68. P. 3777.
- Nagano T., Tomioka T.Y., Nakayama Y. et al. // Phys. Rev. B. 1993. V. 48. P. 9689.
- Yamada K., Lee C.H., Kurahashi K. et al. // Ibid. 1998. V. 57. P. 6165.
- Takagi H., Ido T., Ishibashi S. et al. // Ibid. 1989. V. 40. P. 2254.
- Torrance J.B., Bezinge A., Nazzal A.I., Huang T.C. et al. // Ibid. P. 8872.
- Liang R., Bonn D.A., Hardy W.N. // Ibid. 2006. V. 73. P. 180505.
- Кожушнер М.А., Посвянский В.С., Лидский Б.В. и др. // ФТТ. 2020. Т. 62. № 8. С. 1154.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




