Three-dimensional mathematical simulation of two-phase detonation in the system of gaseous oxydizer with fuel droplets
- Autores: Ivanov V.S.1, Frolov S.M.1,2
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
 
- Edição: Volume 43, Nº 10 (2024)
- Páginas: 61-70
- Seção: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/680952
- DOI: https://doi.org/10.31857/S0207401X24100054
- ID: 680952
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The results of a three-dimensional numerical study of the propagation of detonation waves in a two-phase mixture of liquid iso-octane with air are presented. The detonation calculation technique is based on Navier-Stocks equations with the simulation of liquid phase evolution using the Lagrangian formalism. Numerical models consider droplet movement, evaporation and breakup as well as finite-rate mixing and chemical transformations. The reliability of the method is confirmed by the comparison of predicted and measured velocities of heterogeneous detonation in a vertical channel of square cross-section. The influence of the prehistory on the formation of a two-phase detonable mixture in the channel on the propagation velocity and structure of detonation waves is considered. The influence of droplet coagulation is also taken into account. New data on the spatiotemporal structure of a two-phase detonation wave have been obtained.
Texto integral
 
												
	                        Sobre autores
V. Ivanov
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences
														Email: smfrol@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Frolov
Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
							Autor responsável pela correspondência
							Email: smfrol@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow; Moscow						
Bibliografia
- G.D. Roy, S.M. Frolov, A.A. Borisov, D.W. Netzer, Progr. Energy Combust. Sci., 30, 545 (2004).
- S.M. Frolov, V.S. Aksenov, V.S. Ivanov, I. O. Shamshin, S.A. Nabatnikov, Gorenie Vzryv, 12, 63 (2019).
- F.A. Bykovskiy, S.A. Zhdan, Continous spin detonation. Novosibirsk: Lavrientev insitute SB RAS, 2013.
- S.M. Frolov, V.S. Ivanov, I.O. Shamshin, Gorenie Vzryv, 15, 67 (2022)
- S.M. Frolov, V.S. Ivanov, Russ. J. Phys. Chem. B., 15(2), 318 (2021).
- N. Smirnov, V. Nikitin, V.R. Dushin, Yu.G. Filippov, V. Nerchenko, J. Khadem, Acta Astronautica, 115, 94 (2015).
- A. Fedorov, T.A. Khmel, Combust. Explos. Shock Waves, 41, 435 (2005)
- E.K. Dabora, L.P. Weinberger, Acta Astronautica, 1, 361 (1974)
- V.V. Mitrofanov, Homogenious and heterogenious detonation. Novosibirsk:, Lavrientev insitute SB RAS 2003.
- K. Kailasanath, AIAA J., 41, 145 (2003).
- V. Tangirala, A. Dean, O. Peroomian, S. Palaniswamy, Proc. 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, 24, 1173 (2007)
- S.M. Frolov, V.S. Posvyanskii // Explosion Dynamics and Hazards, Eds. S.M. Frolov, F. Zhang, and P. Wolanski. Moscow, Torus Press, (2010).
- Q. Meng, M. Zhao, Y. Xu, L. Zhang, H. Zhang (2022). doi: 10.48550/arXiv.2209.11913
- N. Jourdaine, N. Tsuboi, A. K. Hayashi, Combust. Flame, 244, 112278 (2022)
- V. S. Ivanov, S. М. Frolov, Gorenie Vzryv, 3, 63 (2010).
- V.S. Ivanov, I.O. Shamshin, S.M. Frolov, Energies, 16, 7028 (2023).
- S.M. Frolov, V.S. Aksenov, I.O. Shamshin, Khim. Fizika, B., 36, 34 (2017); in russian.
- J.C. Tannehill, A.A. Dale, R.H. Pletcher, Computational fluid mechanics and heat transfer. Washington DC: Taylor and Francis, (1997).
- H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. London: Longman Scientific and Technical (2007)
- J.K. Dukowicz, Quasi–steady droplet change in the presence of convection Los Alamos: University of California (1979).
- R.D. Reitz, Atomisation Spray Technology, 3, 309 (1987).
- S.B. Pope, Progress in Energy and Combustion Science. 11, 119 (1985).
- S.M. Frolov, V.S. Ivanov, B. Basara, M. Suffa, J. Loss Prevention Process Industries, 26, 302 (2013).
- S.M. Frolov, V.S. Ivanov, Deflagrative and detonative combustion / Ed. by G. Roy, S. Frolov. Moscow: Torus Press (2010).
- L. Mangani, C. Bianchini // Proc. OpenFOAM International Conference, 1, 1, (2007). https://flore.unifi.it/retrieve/handle/2158/418277/15222/OFIC-07.pdf
- К.А. Avdeev, V.S. Ivanov, S.M. Frolov, B. Basara, P. Priesching, M. Suffa, Gorenie Vzryv, 5, 91, (2012).
- V.N. Piskunov, Theoretical models of aerosols formation. Sarov: VNIIEF (2000).
- V.Ya. Basevich, А.А. Belyaev, S.N. Medvedev, V.S. Posvyanskiy, S.М. Frolov, Gorenie Vzryv, 8, 21, (2015).
- C. Naik, C.K. Westbrook, O. Herbinet, W. Pitz, M. Mehl, Proc. Combust. Inst. 33. P. 383 (2011).
- Z. Wu, Y. Mao, L. Yu, Y. Qian, X. Lu, Combust. Flame, 228, 302, (2021).
- S.М. Frolov, A.N. Polenov, B.E. Gelfand, А. А. Borisov, Sov. J. Chem. 5, 7 (1986).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




