Механизм распространения горения в пористых нанотермитах
- Авторы: Кириленко В.Г.1, Долгобородов А.Ю.1,2,3, Бражников М.А.1, Кусков М.Л.1
- 
							Учреждения: 
							- Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
- Объединенный институт высоких температур Российской академии наук
- Национальный исследовательский ядерный университет “МИФИ”
 
- Выпуск: Том 42, № 8 (2023)
- Страницы: 27-38
- Раздел: Горение, взрыв и ударные волны
- URL: https://cardiosomatics.ru/0207-401X/article/view/674837
- DOI: https://doi.org/10.31857/S0207401X23080058
- EDN: https://elibrary.ru/HYOWOE
- ID: 674837
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Процесс быстрого горения наноразмерных пористых смесей Al + CuO в кварцевых трубках исследован с помощью высокоскоростной видеосъемки. Математическая обработка кинограмм, полученных с использованием нейтральных светофильтров разной толщины, позволила определить скорости горения на различных участках трубки и экспериментально оценить размеры зон воспламенения и горения наноразмерного термита. Для объяснения механизма распространения горения предложена простая, основанная на законе Дарси, модель фильтрации горячих продуктов через макропоры. По результатам модельных экспериментов с горением наноразмерного термита в трубках с инертными преградами (стеклянные микросферы, воздушные промежутки) получены данные, которые позволили разработать простой алгоритм оценки проницаемости наноразмерной смеси и давления в зоне горения.
Ключевые слова
Об авторах
В. Г. Кириленко
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: aldol@chph.ras.ru
				                					                																			                												                								Россия, Москва						
А. Ю. Долгобородов
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Объединенный институт высоких температур Российской академии наук; Национальный исследовательский ядерный университет “МИФИ”
														Email: aldol@chph.ras.ru
				                					                																			                												                								Россия, Москва; Россия, Москва; Россия, Москва						
М. А. Бражников
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
														Email: aldol@chph.ras.ru
				                					                																			                												                								Россия, Москва						
М. Л. Кусков
Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук
							Автор, ответственный за переписку.
							Email: aldol@chph.ras.ru
				                					                																			                												                								Россия, Москва						
Список литературы
- Energetic nanomaterials: synthesis, characterization, and application / Eds. Zarko V.E., Gromov A.A. Amsterdam: Elsevier, 2016.
- Nano-Energetic Materials: Energy, Environment and Sustainability / Eds. Bhattacharya S., Agarwal A.K., Rajagopalan T., Patel V.K. Singapore: Springer Nature Singapore, 2019.
- Yetter R.A. // Proc. Combust. Inst. 2021. V. 38. № 1. P. 57; https://doi.org/10.1016/j.proci.2020.09.008
- Polis M., Stolarczyk A., Glosz K., Jarosz T. // Materials. 2022. V. 15. № 9. P. 3215; https://doi.org/10.3390/ma15093215
- Pantoya M., Granier J. // J. Therm. Anal. Calorim. 2006. V. 85. P. 37; https://doi.org/10.1007/s10973-005-7342-z
- Dolgoborodov A.Yu., Kirilenko V.G., Brazhnikov M.A. et al. // Def. Technol. 2022. V. 18. № 2. P. 194; https://doi.org/10.1016/j.dt.2021.01.006
- Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю. и др. // Горение и взрыв. 2022. Т. 15. № 1. С. 82.
- Densmore J.M., Sullivan K.T., Gash A.E., Kuntz J.D. // Propellants Explos. Pyrotech. 2014. V. 39. № 3. P. 416; https://doi.org/10.1002/prep.201400024
- Wang Y., Dai J., Xu J., Shen Y. et al. // Vacuum. 2021. V. 184. P. 109878; https://doi.org/10.1016/j.vacuum.2020.109878
- Weismiller M.R., Malchi J.Y., Yetter R.A., Foley T.J. // Proc. Combust. Inst. 2009. V. 32. № 2. P. 1895; https://doi.org/10.1016/j.proci.2008.06.191
- Baijot V., Rouhani M., Rossi C., Esteve A. // Combust. and Flame. 2017. V. 180. P. 10; https://doi.org/10.1016/j.combustflame.2017.02.031
- Egan G., Zachariah M. // Ibid. 2015. V. 162. P. 2959; https://doi.org/10.1016/j.combustflame.2015.04.013
- Jacob R., Kline D., Zachariah M. // J. Appl. Phys. 2018. V. 123. P. 115902; https://doi.org/10.1063/1.5021890
- Sanders V., Asay B., Foley T. et al. // J. Propul. Power. 2007. V. 23. № 4. P. 707; https://doi.org/10.2514/1.26089
- Saceleanu F., Idir M., Chaumeix N., Wen J.Z. // Front. Chem. 2018. V. 6. P. 465; https://doi.org/10.3389/fchem.2018.00465
- Jabraoui H., Esteve A., Schoenitz M. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. № 25. P. 29451; https://doi.org/10.1021/acsami.2c07069
- Sullivan K., Zachariah M.R. // J. Propul. Power. 2010. V. 26. № 3. P. 467; https://doi.org/10.2514/1.45834
- Ген М.Я., Петров Ю.И. // Успехи химии. 1969. Т. 38. № 12. С. 2249.
- Kuskov M.L., Zhigach A.N., Leipunskii I.O. et al. // IOP Conf. Ser.: Mater. Sci. Eng. 2019. V. 558. № 1. Article 012022; https://doi.org/10.1088/1757-899X/558/1/012022
- Streletskii A.N., Kolbanev I.V., Vorobieva G.A. et al. // J. Mater. Sci. 2018. V. 53. № 19. P. 13550; https://doi.org/10.1007/s10853-018-2412-3
- Стрелецкий А.Н., Колбанев И.В., Трошин К.Я. и др. // Хим. физика. 2016. Т. 35. № 7. С. 79; https://doi.org/10.7868/S0207401X16070116
- Кириленко В.Г., Гришин Л.И., Долгобородов А.Ю., Бражников М.А. // Горение и взрыв. 2020. Т. 13. № 1. С. 145.
- Kaviany M. Principles of Heat Transfer in Porous Media. New York: Second Edition. Springer-Verlag, 1995; https://doi.org/10.1007/978-1-4612-4254-3
- Um K., Zhang X., Katsoulakis M., Plechas P., Tartakovsky D.M. // J. Appl. Phys. 2018. V. 123. № 7. Article 075103; https://doi.org/10.1063/1.5009691
- Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: Справ. М.: Энергоатомиздат, 1991.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Физматлит, 2001.
- Fischer S.H., Grubelich M.C. // Proc. 24th Intern. Pyrotechnics Seminar: Sandia National Laboratories (SNL), Monterey, USA. 1998. V. 1176. P. 56.
- Кришеник П.М., Костин С.В., Озерковская Н.И., Шкадинский К.Г. // Хим. физика. 2019. Т. 38. № 2. С. 45; https://doi.org/10.1134/S0207401X19020092
- Кришеник П.М., Костин С.В., Рогачев С.А. // Хим. физика. 2022. Т. 41. № 3. С. 73. https://doi.org/10.31857/S0207401X22030086
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 
















