Компьютерное моделирование силиценового анода на подложке из карбида кремния
- Авторы: Галашев А.Е.1,2
- 
							Учреждения: 
							- Институт высокотемпературной электрохимии Уральского отделения Российской академии наук
- Уральский федеральный университет им. первого президента России Б.Н. Ельцина
 
- Выпуск: Том 42, № 2 (2023)
- Страницы: 49-59
- Раздел: Электрические и магнитные свойства материалов
- URL: https://cardiosomatics.ru/0207-401X/article/view/674901
- DOI: https://doi.org/10.31857/S0207401X2302005X
- EDN: https://elibrary.ru/IWOPGN
- ID: 674901
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Методом молекулярной динамики исследованы структуры двухслойного силицена и поддерживающей его пленки 4H-модификации карбида кремния, выполняющих роль анода литий-ионного аккумулятора. Поведение такого комбинированного анода рассмотрено в условиях его вертикального заполнения литием. В листах силицена присутствовали вакансионные дефекты в виде би-, три- и гексавакансий. Ионы лития, направляемые перпендикулярно плоскости силицена, осаждались на листах силицена, оставались в силиценовом канале и частично проникали на поверхность подложки. Вертикальные смещения атомов в верхнем листе силицена после интеркаляции лития существенно превосходили соответствующие смещения в нижнем листе, соприкасающемся с подложкой. Построение многогранников Вороного отдельно для Si- и C-подсистем карбида кремния позволило выявить структурные особенности каждой из подсистем исследуемой двумерной слоистой структуры.
Ключевые слова
Об авторах
А. Е. Галашев
Институт высокотемпературной электрохимии Уральского отделения Российской академии наук; Уральский федеральный университет им. первого президента России Б.Н. Ельцина
							Автор, ответственный за переписку.
							Email: galashev@ihte.uran.ru
				                					                																			                												                								Россия, Екатеринбург; Россия, Екатеринбург						
Список литературы
- Galashev A.Y., Ivanichkina K.A. // Phys. Chem. Chem. Phys. 2019. V. 21. № 23. P. 12310; https://doi.org/10.1039/C9CP01571J
- Galashev A., Ivanichkina K., Katin K., Maslov M. // Computation. 2019. V. 7. P. 60; https://doi.org/10.3390/computation7040060Y
- Yang Y., Ren J.G., Wang X. et al. // Nanoscale. 2013. V. 5. № 18. P. 8689; https://doi.org/10.1039/C3NR02788K
- Qi C., Li S., Yang Z. et al. // Carbon. 2022. V. 186. P. 530; https://doi.org/10.1016/j.carbon.2021.10.062
- Chang X.H., Li W., Yang J.F. et al. // J. Mater. Chem. A. 2015. V. 3. № 7. P. 3522; https://doi.org/10.1039/C4TA06334A
- Kumari T.S., Jeyakumar D., Kumar T.P. // RSC Adv. 2013. V. 3. № 35. P. 15028; https://doi.org/10.1039/C3RA40798E
- Peng Q., Wen X.-D., De S. // Ibid. 2013. V. 3. P. 13772; https://doi.org/10.1039/C3RA41347K
- Yoo S.H., Lee B., Kang K. // Nanotechnology. 2021. V. 32. № 29. P. 295702; https://doi.org/10.1088/1361-6528/abf26d
- Wortman J.J., Evans R.A. // J. Appl. Phys. 1965. V. 36. P. 153; https://doi.org/10.1063/1.1713863
- Galashev A.E., Rakhmanova O.R., Ivanichkina K.A., Zaikov Y.P. // Lett. Mater. 2018. V. 8. № 4. P. 463; https://doi.org/10.22226/2410-3535-2018-4-463-467
- Galashev A.Y., Ivanichkina K.A., Rakhmanova O.R. // Comput. Mater. Sci. 2021. V. 200. P. 110771; https://doi.org/10.1016/j.commatsci.2021.110771
- Galashev A.Y. // Sol. St. Ionics 2020. V. 357. P. 115463; https://doi.org/10.1016/j.ssi.2020.115463
- Галашев А.Е., Рахманова О.Р., Исаков А.В. // Хим. физика. 2020. Т. 39. № 7. С.72; https://doi.org/10.1134/S1990793120060044
- Галашев А.Е., Рахманова О.Р., Зайков Ю.П. // ФТТ. 2016. Т. 58. № 9. С. 1786; http://elibrary.ru/item.asp?id=27368752
- Галашев А.Е., Рахманова О.Р. // Теплофизика высоких температур. 2016. Т. 54. № 1. С. 13; https://doi.org/10.7868/S0040364415050129
- Galashev A.Y., Ivanichkina K.A., Vorob’ev A.S. et al. // Intern. J. Hydr. Ener. 2021. V. 46. № 32. P. 17019; https://doi.org/10.1016/j.ijhydene.2020.11.225
- Galashev A.Y. // Intern. J. Comp. Methods. 2021. V. 18. № 09. P. 2 150 032; https://doi.org/10.1142/S0219876221500328
- Галашев А.Е., Рахманова О.Р., Катин К.П., Маслов М.М., Зайков Ю.П. // Хим. физика. 2020. Т. 39. № 11. С. 80; https://doi.org/10.31857/S0207401X20110047
- Гришин М.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2020. Т. 39. № 7. С. 63; https://doi.org/10.31857/S0207401X20070067
- Дохликова Н.В., Гатин А.К., Сарвадий С.Ю. и др. // Хим. физика. 2021. Т. 40. № 7. С. 67; https://doi.org/10.31857/S0207401X21070025
- Zhang H.T., Xu H. // Sol. St. Ionics. 2014. V. 263. P. 23; https://doi.org/10.1016/j.ssi.2014.04.020
- Hu Y.W., Liu X.S., Zhang X.P. et al. // Electrochim. Acta. 2016. V. 190. P. 33; https://doi.org/10.1016/j.electacta.2015.12.211
- Shiratani M., Kamataki K., Uchida G. et al. // Mater. Res. Soc. Symp. Proc. 2014. V. 1678. P. 7; https://doi.org/10.1557/opl.2014.742
- Rajapakse M., Karki B., Abu U.O. et al. // Npj 2D Mater. Appl. 2021. V. 5. P. 30; https://doi.org/10.1038/s41699-021-00211-6
- Nuruzzaman Md., Ariful Islam M., Ashraful Alam M., Hadi Shah M.A., Tanveer Karim A.M.M. // Intern. J. Eng. Res. Appl. 2015 V. 5. № 5. P. 48; ISSN: 2248-9622 (electronic)
- Kawahara K., Shirasawa T., Arafune R. et al. // Surf. Sci. 2014. V. 623. P. 25; https://doi.org/10.1016/j.susc.2013.12.013
- Галашев А.Е., Иваничкина К.А. // ЖФХ. 2019. Т. 93. № 4. С. 601; https://doi.org/10.1134/S0044453719040137
- Galashev A.Y., Ivanichkina K.A. // ChemElectroChem. 2019. V. 6. № 5. P. 1525; https://doi.org/10.1002/celc.201900119
- Galashev A.Y., Ivanichkina K.A. // J. Electrochem. Soc. 2018. V. 165. № 9. P. A1788; https://doi.org/10.1149/2.0751809jes
- Галашев А.Е., Рахманова О.Р., Иваничкина К.А. // ЖСХ. 2018. Т. 59. № 4. С. 914; https://doi.org/10.1134/S0022476618040194
- Galashev A.Y., Ivanichkina K.A., Katin K.P., Maslov M.M. // ACS Omega. 2020. V. 5. № 22. P. 13 207; https://doi.org/10.1021/acsomega.0c01240
- Tersoff J. // Phys. Rev. B. 1988. V. 38. № 14. P. 9902; https://doi.org/10.1103/PhysRevB.38.9902
- Fang T.-E., Wu J.-H. // Comput. Mater. Sci. 2008. V. 43. № 4. P. 785; https://doi.org/10.1016/j.commatsci.2008.01.066
- Song M.K., Hong S.D., Kyoung T.N. // J. Electrochem. Soc. 2001. V. 148. № 10. P. A1159; https://doi.org/10.1149/1.1402118
- Pan Y., Gover Y.A. // J. Phys. Commun. 2018. V. 2. № 11. P. 115026; https://doi.org/10.1088/2399-6528/aae2ec
- Plimpton S. // J. Comput. Phys. 1995. V. 117. № 1. P. 1; https://doi.org/10.1006/jcph.1995.1039
- Галашев А.Е., Иваничкина К.А. // ФТТ. 2019. Т. 61. № 2. С. 365; https://doi.org/10.1134/S1063783419020136
- Zhao K., Tritsaris G.A., Pharr M. et al. // Nano Lett. 2012. V. 12. № 8. P. 4397; https://doi.org/10.1021/nl302261w
- Kushima A., J. Huang Y., Li J. // ACS Nano. 2012. V. 6. № 11. P. 9425; https://doi.org/10.1021/nn3037623
- Levitas V.I., Attariani H. // Sci. Rep. 2013. V. 3. P. 1615; https://doi.org/10.1038/srep01615
- Sukharev V., Zschech E., Nix W.D. // J. Appl. Phys. 2007. V. 102. № 5. P. 053505; https://doi.org/10.1063/1.2775538
- Gao Y.F., Cho M., Zhou M. // J. Mech. Sci. Technol. 2013. V. 27. P. 1205; https://doi.org/10.1007/s12206-013-0401-7
- Bucci G., Nadimpalli S.P.V., Sethuraman V.A., Bower A.F., Guduru P.R. // J. Mech. Phys. Sol 2014. V. 62. P. 276; https://doi.org/10.1016/j.jmps.2013.10.005
- Chakraborty J., Please C. P., Goriely A., Chapman S.J. // Intern. J. Sol. Struct. 2015. V. 54. P. 66; https://doi.org/10.1016/j.ijsolstr.2014.11.006
- Mortazavia B., Dianatb A., Cunibertib G., Rabczuka T. // Electrochim. Acta. 2016. V. 213. P. 865. https://doi.org/10.1016/j.electacta.2016.08.027
- Calcagno L., Musumeci P., Roccaforte F., Bongiorno C., Foti G. // Appl. Surf. Sci. 2001. V. 184. № 1–4. P. 123; https://doi.org/10.1016/S0169-4332(01)00487-1
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 









