Пульсирующее горение водородно-воздушной смеси в канале с внезапным расширением
- Авторы: Федорова Н.Н.1
- 
							Учреждения: 
							- Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук
 
- Выпуск: Том 44, № 7 (2025)
- Страницы: 73-92
- Раздел: Горение, взрыв и ударные волны
- URL: https://cardiosomatics.ru/0207-401X/article/view/687631
- DOI: https://doi.org/10.31857/S0207401X25070081
- ID: 687631
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Численно исследовано высокоскоростное турбулентное реагирующее течение в канале с внезапным расширением в виде двух симметрично расположенных уступов. Описаны различные фазы горения: начальная с низкой полнотой сгорания и интенсивная с высокой полнотой сгорания. В интенсивной фазе в зависимости от мощности тепловыделения могут реализоваться пульсирующий (автоколебательный) режим с периодическим движением зоны интенсивного тепловыделения вверх и вниз по потоку и режим с тепловым запиранием, при котором образовавшийся в тепловом горле прямой скачок уплотнения, распространяясь вверх по потоку, выходит в узкую инжекторную часть канала и перекрывает (“запирает”) канал. Переход к дозвуковому течению происходит, если тепловыделение превышает суммарный тепловой поток на входе в полтора и более раза. Пульсационный режим, в котором скорость в ядре потока остается сверхзвуковой, реализуется, если суммарная мощность тепловыделения примерно равна тепловому потоку на входе в канал. Анализ этапов пульсирующего режима горения предварительно неперемешанной водородно-воздушной смеси показал, что движение области активного горения вверх по потоку, сопровождающееся повышением тепловыделения, связано с отрывом пограничного слоя от стенок канала и формированием горячей пристенной струи, направленной к уступу, т.е. против основного потока. После стабилизации теплового источника в начале прямой секции канала интенсивность тепловыделения снижается из-за полного выгорания окислителя, в результате чего тепловое горло расширяется, и в канал начинают поступать свежие реагенты. В конце прямого участка канала формируется новый тепловой источник, который начинает двигаться вверх по потоку, и весь процесс периодически повторяется.
Полный текст
 
												
	                        Об авторах
Н. Н. Федорова
Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук
							Автор, ответственный за переписку.
							Email: nfed@itam.nsc.ru
				                					                																			                												                	Россия, 							Новосибирск						
Список литературы
- Anderson J.D. Fundamentals of Aerodynamics. New York: McGraw-Hill, 2007.
- M. Sun, H. Wang, Z. Cai, J. Zhu Unsteady Supersonic Combustion. Singapore: Springer, 2020. https://doi.org/10.1007/978-981-15-3595-6
- Liberman M.A. Combustion Physics: Flames, Detonations, Explosions, Astrophysical Combustion and Inertial Confinement Fusion. Springer Int. Publ., 2021.
- Ларионов В.М., Зарипов Р.Г. Автоколебания газа в установках с горением. Казань: Изд-во Казан. гос. техн. ун-та, 2003.
- Meng X., de Jong W., Kudra T. // Renew. Sust. Energ. Rev. 2016. V. 55. P. 73. https://doi.org/10.1016/j.rser.2015.10.110
- Poinsot T. // Proc. Comb. Inst. 2017. V. 36. № 1. P. 1. https://doi.org/10.1016/j.proci.2016.05.007
- Раушенбах Б.В. Вибрационное горение. М.: Физматгиз, 1967.
- Lieuwen T. C. Unsteady Combustor Physics. Cambridge: Cambridge University Press, 2021. https://doi.org/10.1017/9781108889001
- Mejia D., Selle L., Bazile R., Poinsot T. // Proc. Combust. Inst. 2015. V. 35. № 3. P. 3201. https://doi.org/10.1016/j.proci.2014.07.015
- Choi J.-Y., Ma F., Yang V. // Ibid. 2005. V. 30. P. 2851. https://doi.org/10.1016/j.proci.2004.08.250
- Lin K.-C., Jackson K., Behdadnia R. et al. // J. Propul. Power. 2010. V. 26. P. 1161. https://doi.org/10.2514/1.43338
- Wang H., Wang Z., Sun M. // Exp. Therm. Fluid Sci. 2013.V. 45. P. 259. https://doi.org/10.1016/j.expthermflusci.2012.10.013
- Wang H., Wang Z., Sun M., Wu H. // Sci. China Technol. Sc. 2013. V. 56. P. 1093. https://doi.org/10.1007/s11431-013-5198-1
- Wang H., Wang Z., Sun M., Qin N. // Int. J. Hydrogen Energ. 2013. V. 38. P. 5918. https://doi.org/10.1016/j.ijhydene.2013.02.100
- Ouyang H., Liu W., Sun M. // Acta Astronaut. 2015. V. 117. P. 90. https://doi.org/10.1016/j.actaastro.2015.07.016
- Han Y., He Y., Tian Y., Zhong F., Le J. // Aerosp. Sci. Technol. 2018. V. 72. P. 114. https://doi.org/10.1016/j.ast.2017.11.003
- Zhao G.-Y., Sun M.-B., Song X.-L., Li X.-P., Wang H.-B. // Acta Astronaut. 2019. V. 155. P. 255. https://doi.org/10.1016/j.actaastro.2018.12.011
- Nguyen T.M., Sirignano W.A. // AIAA J. 2019. V. 57. P. 5351. https://doi.org/10.2514/1.J057743
- Vlasenko V.V., Sabelnikov V.A., Molev S.S. et al. // Shock Waves. 2020. V. 30. P. 245. https://doi.org/10.1007/s00193-020-00941-4
- Jeong S.-M., Han H.-S., Sung B.-K., Lee E. S., Choi J. AIAA Paper 2021-3535. https://doi.org/10.2514/6.2021-3535
- Jeong S.-M., Han H.-S., Sung B.-K., Kim W., Choi J.-Y. // Aerospace. 2023. V. 10. P. 932. https://doi.org/10.3390/aerospace10110932
- Wang T., Wang Z., Sun M., Li F., Huang Y. // AIAA J. 2023. V. 61. P. 2591. https://doi.org/10.2514/1.J062051
- Guo S., Zhang X., Liu Q., Yue L. // Phys. Fluids. 2023. V. 35. P. 045108. https://doi.org/10.1063/5.0142210
- Jeong S.-M., Lee J.-H., Choi J.-Y. // Proc. Combust. Inst. 2023. V. 39. P. 3107. https://doi.org/10.1016/j.proci.2022.07.245
- Boulal S., Genot A., Klein J.-M. et al. // Combust. and Flame. 2023. V. 257. P. 112999. https://doi.org/10.1016/j.combustflame.2023.112999
- Mohamadi M., Tahsini A. M., Tavazohi R. // Int. J. Hydrogen Energ. 2024. V. 67. P. 769. https://doi.org/10.1016/j.ijhydene.2024.04.205
- Yasunaga S., Nakaya S., Tsue M. // Proc. Combust. Inst. 2024. V. 40. P. 105302. https://doi.org/10.1016/j.proci.2024.105302
- Zhang L., Li S., Liu T., Zhou H., Ren Z. // Int. J. Hydrogen Energ. 2025. V. 97. P. 444. https://doi.org/10.1016/j.ijhydene.2024.11.402
- Zakharova Y.V, Fedorova N. N., Goldfeld M. A., Vankova O. S. // J. Phys. Conf. Ser. 2019. V. 1382. P. 012055. https://doi.org/10.1088/1742-6596/1382/1/012055
- Федорова Н.Н., Гольдфельд М.А // Письма в ЖТФ. 2021. Т. 47. № 2. С. 3. http://dx.doi.org/10.21883/PJTF.2021.02.50536.18525
- Федорова Н.Н., Ванькова О.С., Гольдфельд М.А.// Физика горения и взрыва. 2022. Т. 58. № 2. С. 3. https://doi.org/ 10.15372/FGV20220201
- Федорова Н.Н., Гольдфельд М.А., Пикалов В.В.// Физика горения и взрыва. Т. 58. № 5. С. 33. https://doi.org/ 10.15372/FGV20220505
- Федорова Н.Н., Гольдфельд М.А., Пикалов В.В.// Физика горения и взрыва. Т. 58. № 5. С. 44. https://doi.org/ 10.15372/FGV20220506
- Федорова Н.Н. // Физика горения и взрыва. 2023. Т. 59. № 4. С. 12. https://doi.org/ 10.15372/FGV2023.9304
- Гольдфельд М.А.// Теплофизика и аэромеханика. 2020. Т. 27. № 4. С. 601.
- Maas U., Warnatz J. // Combust. and Flame. 1988. V. 74. № 1. P. 53. https://doi.org/10.1016/0010-2180(88)90086-7
- Ванькова О.С., Фёдорова Н.Н.// Физика горения и взрыва. 2021. Т. 57. № 4. С. 18. https://doi.org/ 10.15372/FGV20210402
- Yamashita H., Shimada M., Takeno T. // Proc. Combust. Inst. 1996. V. 26. P. 27. https://doi.org/10.1016/S0082-0784(96)80196-2
- Gerlinger P., Stoll P., Kindler M., Schneider F., Aigner M. // Aerosp. Sci. Technol. 2008. V. 12(2). P. 159. https://doi.org/10.1016/j.ast.2007.04.003
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 














