Temporal characteristics of shock-heated air radiation
- Autores: Bykova N.G.1, Kozlov P.V.1, Zabelinsky I.E.1, Gerasimov G.Y.1, Levashov V.Y.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Volume 44, Nº 8 (2025)
- Páginas: 18-25
- Seção: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/688995
- DOI: https://doi.org/10.31857/S0207401X25080021
- ID: 688995
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The paper presents the results of measuring the time spectrograms of shock-heated air radiation obtained on the STS-M and DDST-M shock tubes of the Institute of Mechanics (Moscow State University) using an integral method that records the time evolution of radiation passing through the measuring section of the shock tubes in narrow spectral ranges specially selected using monochromators. The measurements were performed for atomic lines and molecular bands in the wavelength range from vacuum ultraviolet to infrared radiation at an initial pressure before the shock wave of 0.25 Torr and shock wave velocities from 7.8 to 11.0 km/s. The obtained results are compared with the experimental data of other authors.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
N. Bykova
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: vyl69@mail.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowP. Kozlov
Lomonosov Moscow State University
														Email: vyl69@mail.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowI. Zabelinsky
Lomonosov Moscow State University
														Email: vyl69@mail.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowG. Gerasimov
Lomonosov Moscow State University
														Email: vyl69@mail.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowV. Levashov
Lomonosov Moscow State University
														Email: vyl69@mail.ru
				                					                																			                								
Institute of Mechanics
Rússia, MoscowBibliografia
- Brandis A.M., Cruden B.A. // AIAA Paper. 2017. № 2017-1145. https://doi.org/10.2514/6.2017-1145
- McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // AIAA Paper. 2017. № 2015-3545. https://doi.org/10.2514/6.2015-3545
- M. Lino da Silva, R. Perreira, J. Vargas et al. // AIAA Paper. 2020. № 2020-0624. https://doi.org/10.2514/6.2020-0624
- Gerasimov G.Ya., Kozlov P.V., Zabelinsky I.E., Bykova N.G., Levashov V.Yu. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 642. https://doi.org/10.1134/S1990793122040194
- Bykova N.G., Zabelinsky I.E., Kozlov P.V., Gerasimov G.Ya.,. Levashov V.Yu. // Russ. J. Phys. Chem. B. 2013. V. 17. P. 1152. https://doi.org/10.1134/S1990793123050184
- Surzhikov S.T. // Phys.-Chem. Kinet. Gaz. Dynam. 2022. V. 23. No. 4. P. 1. http://chemphys.edu.ru/issues/2022-23-4/articles/1015/
- Zhao Y., Huang H. // Acta Astronaut. 2020. V. 169. P. 84. https://doi.org/10.1016/j.actaastro.2020.01.002
- Surzhikov S.T. // Russ. J. Phys. Chem. B. 2010. V. 4. P. 613. https://doi.org/10.1134/S1990793110040123
- Brandis A.M., Johnson C.O. // AIAA Paper. 2017. № 2014-2374. https://doi.org/10.2514/6.2014-2374
- Cruden B., Martinez R., Grinstead J., Olejniczak J. // AIAA Paper. 2017. № 2009-4240. https://doi.org/10.2514/6.2009-4240
- Brandis A.M., Johnston C.O., Cruden B.A., Prabhu D., Bose D. // J. Thermophys. Heat Trans. 2015. V. 29. P. 209. https://doi.org/10.2514/1.T4000
- Dufrene A., Holden M. // AIAA Paper. 2011. № 2011-626. https://doi.org/10.2514/6.2011-626
- McGilvray M., Doherty L.J., Morgan R.G., Gildfind D.E. // AIAA Paper. 2015. № 2015-3543. https://doi.org/10.2514/6.2015-3543
- Zalogin G.N., Kozlov P.V., Kuznetsova L.A. et al. // Tech. Phys. 2001. V. 46. P. 654. https://doi.org/10.1134/1.1379629
- Bykova N.G., Zabelinsky I.E., Ibragimova L.B. et al. // Russ. J. Phys. Chem. B. 2018. V. 12. P. 108. https://doi.org/10.1134/S1990793118010165
- Brandis A.M., Johnson C.O., Cruden B.A. // AIAA Paper. 2016. № 2016-3690. https://doi.org/10.2514/6.2016-3690
- Palumbo G., Craig R.A., Whiting E.W., Park C. // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 51. P. 207. https://doi.org/10.1016/S0022-4073(96)00138-0
- Zabelinsky I.E., Kozlov P.V., Akimov Yu.V. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. V. 977. https://doi.org/10.1134/S1990793121060117
- Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Acta Astronaut. 2022. V. 194. P. 461. https://doi.org/10.1016/j.actaastro.2021.10.032
- Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2021. V. 15. P. 652. https://doi.org/10.1134/S1990793121040199
- Kozlov P.V., Zabelinsky I.E., Bykova N.G. et al. // Russ. J. Phys. Chem. B. 2022. V. 16. P. 883. https://doi.org/10.1134/S1990793122050049
- NIST Atomic Spectra Database. Ver. 5.12. Gaithersburg: NIST, 2024. https://doi.org/10.18434/T4W30F
- Kozlov P.V., Surzhikov S.T. // AIAA Paper. 2017. № 2017-0157. https://doi.org/10.2514/6.2017-0157
- Grinstead J.H., Wilder M.C., Olejniczak J. et al. // AIAA Paper. 2008. № 2008-1244. https://doi.org/10.2514/6.2008-1244
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







