Reactions of Halogenated Acetic and Propionic Acids with Fluorine Atoms
- 作者: Morozov I.I.1, Vasiliev E.S.1, Butkovskaya N.I.1, Syromyatnikov A.G.1,2, Khomyakova P.S.1, Volkov N.D.1, Morozova O.S.1, Savilov S.V.2,3
- 
							隶属关系: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
 
- 期: 卷 42, 编号 10 (2023)
- 页面: 26-33
- 栏目: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://cardiosomatics.ru/0207-401X/article/view/674816
- DOI: https://doi.org/10.31857/S0207401X23100114
- EDN: https://elibrary.ru/PHDRSC
- ID: 674816
如何引用文章
详细
Halogenated acids are of anthropogenic and natural origin and play an important role in atmospheric processes. The global distribution and high stability of halogenated acids is concerning because they are toxic, accumulate in surface waters, and pose a threat to humans and the ecosystem. Knowledge of the reaction mechanism of halogenated acids in the gas phase makes it possible to explain and control many important processes occurring in the atmosphere and during combustion. In this paper, we experimentally study the reactions of atomic fluorine with monochloroacetic, dichloroacetic, trichloroacetic, trifluoroacetic, and pentafluoropropionic acids at a pressure of 1 Torr. The experiments are carried out using a flow reactor connected to a mass spectrometer with a modulated beam. The rate constants of these reactions at room temperature are determined by the method of competing reactions (MCR) using the available published data. It is shown that in this series the fastest reaction is F + CH2ClCOOH. In addition, the temperature dependences of the rate constants are obtained for F + CF3COOH and F + C2F5COOH reactions in the ranges of 258–343 and 262–343 K, respectively.
作者简介
I. Morozov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва						
E. Vasiliev
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва						
N. Butkovskaya
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва						
A. Syromyatnikov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва; Россия, Москва						
P. Khomyakova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва						
N. Volkov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва						
O. Morozova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
														Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва						
S. Savilov
Lomonosov Moscow State University, Moscow, Russia; Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia
							编辑信件的主要联系方式.
							Email: igormrzv@gmail.com
				                					                																			                												                								Россия, Москва; Россия, Москва						
参考
- Asplund G., Grimvall A., Jonsson S. // Chemosphere. 1994. V. 28. № 8. P. 1467; https://doi.org/10.1016/0045-6535(94)90241-0
- Hoekstra E.J. // Ibid. 2003. V. 52. № 2. P. 355; https://doi.org/10.1016/S0045-6535(03)00213-3
- Sidebottom H., Franklin J. // Pure Appl. Chem. 1996. V. 68. № 9. P. 1757; https://doi.org/10.1351/pac199668091757
- Folberth G., Pfister G., Baumgartner D. et al. // Environ. Pollut. 2003. V. 124. № 3. P. 389; https://doi.org/10.1016/S0269-7491(03)00048-4
- Lifongo L.L., Bowden D.J., Brimblecombe P. // Intern. J. Phys. Sci. 2010. V. 5. № 6. P. 738.
- Karpov G.V., Vasiliev E.S., Volkov N.D. et al. // Chem. Phys. Lett. 2020. V. 760. 138001; https://doi.org/10.1016/j.cplett.2020.138001
- Васильев Е.С., Карпов Г.В., Волков Н.Д. и др. // Хим. физика. 2021. Т. 40. № 3. С. 17; https://doi.org/10.31857/S0207401X20120171
- Pearson R., Cowles J., Hermann G. et al. // IEEE J. Quant. Electr. 1973. V. 9. № 9. P. 879; https://doi.org/10.1109/JQE.1973.1077761
- Vasiliev E.S., Knyazev V.D., Savelieva E.S. et al. // Chem. Phys. Lett. 2011. V. 512. № 4–6. P. 172; https://doi.org/10.1016/j.cplett.2011.07.023
- Vasiliev E.S., Knyazev V.D., Karpov G.V. et al. // J. Phys. Chem. A. 2014. V. 118. № 23. P. 4013; https://doi.org/10.1021/jp5029382
- Васильев Е.С., Карпов Г.В., Шартава Д.К. и др. // Хим. физика. 2022. Т. 41. № 5. С. 10; https://doi.org/10.31857/S0207401X22050119
- NIST Standard Reference Database. Number 69 / Eds. Linstron P.J., Mallard W.G. Gaithersburg: National Institute of Standards and Technology, 2018.
- Васильев Е.С., Сыромятников А.Г., Шартава Д.К. и др. // Хим. безопасность. 2018. Т. 2. № 1. С. 206; https://doi.org/10.25514/CHS.2018.1.12894
- Васильев Е.С., Морозов И.И., Хак В. и др. // Кинетика и катализ. 2006. Т. 47. № 6. С. 859.
- Heinemann-Fiedler P., Hoyermann K., Rohde G. // Ber. Bunsenges. Phys. Chem. 1990. V. 94. № 11. P. 1400; https://doi.org/10.1002/bbpc.199000042
- Platz J., Nielsen O.J., Sehested J. et al. // J. Phys. Chem. 1995. V. 99. № 17. P. 6570; https://doi.org/10.1021/j100017a044
- Vasiliev E.S., Morozov I.I., Karpov G.V. // Intern. J. Chem. Kinet. 2019. V. 51. № 12. P. 909; https://doi.org/10.1002/kin.21319
- Wallington T.J., Hurley M.D. // Ibid. 1995. V. 27. № 2. P. 189; https://doi.org/10.1002/kin.550270209
- Catoire V., Lesclaux R., Schneider W.F. et al. // J. Phys. Chem. 1996. V. 100. № 34. P. 14356; https://doi.org/10.1021/jp960572z
- Wine P.H., Wells J.R., Nicovich J.M. // Ibid. 1988. V. 92. № 8. P. 2223; https://doi.org/10.1021/j100319a028
- Морозов И.И., Васильев Е.С., Волков Н.Д. и др. // Хим. физика. 2022. Т. 41. № 10. С. 16; https://doi.org/10.31857/S0207401X22100089
- Васильев Е.С., Волков Н.Д., Карпов Г.В. и др. // Хим. физика. 2021. Т. 40. № 10. С. 30; https://doi.org/10.31857/S0207401X21100125
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					




