On Initial Stage of Combustion of Acetylene–Oxygen Mixtures in a Tube
- Authors: Krivosheyev P.N.1, Penyazkov O.G.1
- 
							Affiliations: 
							- Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk, Belarus
 
- Issue: Vol 42, No 3 (2023)
- Pages: 30-35
- Section: Combustion, explosion and shock waves
- URL: https://cardiosomatics.ru/0207-401X/article/view/674888
- DOI: https://doi.org/10.31857/S0207401X23030093
- EDN: https://elibrary.ru/LYNDWQ
- ID: 674888
Cite item
Abstract
Experimental study of the process of combustion of a premixed acetylene–oxygen mixture diluted with either nitrogen or argon in a circular cross-section tube is conducted by high-speed photography. The behaviour of flame front at the early stage of acceleration is identified. The experimental findings are compared with the theoretical models available in the literature. It is demonstrated that at the initial stage of the accelerated propagation of flame extended along the channel walls—until deceleration—the velocity of the leading tip of the front is effectively described by the exponential relationship proposed in (Clanet and Searby, 1996). The normal (laminar) burning velocity of the stoichiometric acetylene–oxygen mixture diluted with either nitrogen or argon at a reduced initial pressure (8–21 kPa) is identified.
About the authors
P. N. Krivosheyev
Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk, Belarus
														Email: krivosheyev.pavlik@gmail.com
				                					                																			                												                								Беларусь, Минск						
O. G. Penyazkov
Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus, Minsk, Belarus
							Author for correspondence.
							Email: krivosheyev.pavlik@gmail.com
				                					                																			                												                								Беларусь, Минск						
References
- Clanet C., Searby G. // Combust. and Flame. 1996. V. 105. P. 225.
- Valiev D., Akkerman V., Kuznetsov M. et al. // Ibid. 2013. V. 160. № 1. P. 97.
- Ballossier Y., Virot F., Melguizo-Gavilanes J. // Shock Waves. 2021. V. 31. № 4. P. 307.
- Кривошеев П.Н., Новицкий А.О., Пенязьков О.Г. // Хим. физика. 2022. Т. 41. № 8. С. 38.
- Smith G.P., Golden D.M., Frenklach M. et al.; http://combustion.berkeley.edu/gri-mech/
- Киверин А.Д., Тюрнин А.В., Яковенко И.С. // Хим. физика. 2021. Т. 40. № 12. С. 18.
- Ivanov M.F., Kiverin A.D., Yakovenko I.S. et al. // Intern. J. Hydrogen Energy. 2013. V. 38. P. 16427.
- Krivosheyev P., Penyazkov O., Sakalou A. // Combust. and Flame. 2020. V. 216. P. 146.
- Киверин А.Д., Смыгалина А.Е., Яковенко И.С. // Хим. физика. 2020. Т. 39. № 8. С. 9.
- Liberman M.A., Chukalovsky A.A., Rakhimova T.V., Ivanov M.F., Kiverin A.D. et al. // Acta Astronaut. 2010. V. 67. № 7–8. P. 688.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



