The effect of hypochlorite-induced fibrinogen oxidation on the protein structure, fibrin self-assembly and fibrinolysis
- Autores: Yurina L.V.1, Vasilyeva A.D.1, Evtushenko E.G.2, Gavrilina E.S.1, Obydennyi S.I.3,4, Chabin I.A.3,5, Indeykina M.I.1, Kononikhin A.S.6,7, Nikolaev E.N.6,7, Rosenfeld M.A.1
- 
							Afiliações: 
							- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
- Centre for Theoretical Problems of Physicochemical Pharmacology
- Sechenov First Moscow State Medical University (Sechenov University)
- Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
 
- Edição: Volume 43, Nº 4 (2024)
- Páginas: 81-87
- Seção: Chemical physics of biological processes
- URL: https://cardiosomatics.ru/0207-401X/article/view/674964
- DOI: https://doi.org/10.31857/S0207401X24040109
- EDN: https://elibrary.ru/VEBMSO
- ID: 674964
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The article is dedicated to the structural-functional damage of fibrinogen treated with HOCl in the concentration range (10–100 µM). The MS/MS method detected 15 modified amino acid residues with a dose-dependent susceptibility to the oxidizing agent. Using turbidity measurements and confocal laser scanning microscopy, it has been shown that fibrinogen oxidation by 25–100 µM HOCl leads to the denser fibrin gel formation, as well as delayed polymerization onset and a decrease in the slope of the polymerization curve, presumably due to conformational changes of the protein. At lower HOCl concentration (10 µM), at least six amino acid residues were substantially modified (9–29%), but functionally such modified protein was not distinguishable from the native one. The detected amino acid residues are assumed to be ROS scavengers that prevent fibrinogen functions alteration.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
L. Yurina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Vasilyeva
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
E. Evtushenko
Lomonosov Moscow State University
														Email: lyu.yurina@gmail.com
				                					                																			                								
Faculty of Chemistry
Rússia, MoscowE. Gavrilina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
S. Obydennyi
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Centre for Theoretical Problems of Physicochemical Pharmacology
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
I. Chabin
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Sechenov First Moscow State Medical University (Sechenov University)
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
M. Indeykina
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
A. Kononikhin
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences; Skolkovo Institute of Science and Technology
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
E. Nikolaev
Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Center of Chemical Physics, Russian Academy of Sciences; Skolkovo Institute of Science and Technology
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
M. Rosenfeld
Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
														Email: lyu.yurina@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- K. M. Weigandt, N. White, D. Chung, et al., Biophys. J. 103 (11), 2399–2407 (2012). https://doi.org/10.1016/j.bpj.2012.10.036
- S. J. Klebanoff, J Leukocyte Biology. 77 (5), 598–625 (2005). https://doi.org/10.1189/jlb.1204697
- C. L. Hawkins, D. I. Pattison, M. J. Davies, Amino Acids. 5 (3–4), 259–274 (2003). https://doi.org/10.1007/s00726-003-0016-x
- L. V. Yurina, A. D. Vasilyeva, A. E. Bugrova, et al., Dokl. Biochem. Biophys. 484 (1), 37–41 (2019). https://doi.org/10.1134/S1607672919010101
- L. V. Yurina, A. D. Vasilyeva, M. I. Indeykina, et al., Free Radical Res. 53( 4), 430–455 (2019). https://doi.org/10.1080/10715762.2019.1600686
- A. D. Vasilieva, L. V. Yurina, D. Y. Azarova, et al., Russ. J. Phys. Chem. B 16, 118–122 (2022). https://doi.org/10.1134/S1990793122010316
- N. J. White, Y. Wang, X. Fu, et al., Free Rad. Biol. Med. 96, 181–189 (2016). https://doi.org/10.1016/j.freeradbiomed.2016.04.023
- W. H. Lau, N. J. White, T. W. Yeo, et al., Sci. Rep. 11(1), 15691 (2021). https://doi.org/10.1038/s41598-021-94401-3
- A. N. Shchegolikhin, A. D. Vasilyeva, L. V. Yurina, et al., Russ. J. Phys. Chem. B 15 (1), 123–130 (2021). https://doi.org/10.1134/S1990793121010279
- L. A. Wasserman, L. V. Yurina, A. D. Vasilieva, et al., Russ. J. Phys. Chem. B 15 (6), 1036 (2021). https://doi.org/10.1134/S1990793121060105
- E. S. Vasiliev, G. V. Karpov, D. K. Shartava, et al., Russ. J. Phys. Chem. B 16 (3), 388–394 (2022). https://doi.org/10.1134/S1990793122030113
- J. W. Weisel, C. Nagaswami, Biophys. J. 63 (1), 111–128 (1992). https://doi.org/10.1016/S0006-3495(92)81594-1
- J. Kaufmanova, J. Stikarova, A. Hlavackova, et al., Antioxidants 10 (6), 923 (2021). https://doi.org/10.3390/antiox10060923
- D. V. Sakharov, J. F. Nagelkerke, D. C. Rijken, J. Biol. Chem. 271 (4), 2133–2138 (1996). https://doi.org/10.1074/jbc.271.4.2133
- I. Pechik, J. Madrazo, M. W. Mosesson, et al., Proc. Natl. Acad. Sci. U.S.A. 101 (9), 2718–2723 (2004). https://doi.org/10.1073/pnas.0303440101
- J. W. Weisel, R. I. Litvinov, Fibrous Proteins: Struct. Mechan. Cham: Springer International Publishing, 82, 405–456 (2017). https://doi.org/10.1007/978-3-319-49674-0_13
- L. Medved, J. W. Weisel, Thromb Haemost. 122 (8), 1265–1278 (2022). https://doi.org/10.1055/a-1719-5584
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



