Quantum chemical simulation of reactions of hydrogen and oxygen with a gold–nickel bimetallic nanocoating
- Autores: Grishin M.V.1, Gatin A.K.1, Sarvadii S.Y.1, Slutskii V.G.1, Tastaibek D.T.1, Kharitonov V.A.1
- 
							Afiliações: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
 
- Edição: Volume 44, Nº 5 (2025)
- Páginas: 33-39
- Seção: Kinetics and mechanism of chemical reactions, catalysis
- URL: https://cardiosomatics.ru/0207-401X/article/view/683911
- DOI: https://doi.org/10.31857/S0207401X25050044
- ID: 683911
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Quantum chemical calculations are performed to determine the heats of hydrogenation for the simplest nanosized Au3–/Ni2+ bimetallic system via three possible reaction pathways. It is shown that the reaction pathway releasing maximum energy is Au3–/Ni2+ + H2 → (Au3H2)–/Ni2+ with a heat of reaction of 43.7 kcal/mol. Quantum chemical methods are also used to calculate the heats of reaction for several reaction pathways between Au3–/Ni2+ and oxygen. It is found that the pathway that releases maximum energy adds one O atom to Au3H2 while the other one combines with nickel, (Au3H2)–/Ni2+ + O₂ → (Au3H2–O)–/(Ni2O)+, with a heat of reaction of 39.0 kcal/mol. The reaction mechanism and energy budget are determined for the elementary steps involved in the production of gold Au3– and water from the oxide (Au3H2–O)–. Based on the calculated results, an explanation is proposed for experimental results on successive exposure of a gold–nickel bimetallic nanocoating to hydrogen and oxygen. Since contact between gold and nickel results in negatively charged gold and positively charged nickel particles, the calculations are performed for negatively and positively charged gold- and nickel-containing particles, respectively.
Texto integral
 
												
	                        Sobre autores
M. Grishin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: slutsky@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
A. Gatin
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: slutsky@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
S. Sarvadii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: slutsky@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Slutskii
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: slutsky@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
D. Tastaibek
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: slutsky@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
V. Kharitonov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: slutsky@chph.ras.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Ellert O.G., Novotortsev V.M., Tsodikov M.V., Nikolaev S.A. // Rus. Chem. Rev. 2014. V. 83. № 8. P. 718. https://doi.org/10.1070/rc2014v083n08abeh004432
- Alshammari H., Miedziak P. J., Davies T. E. et al.// Catal. Sci. Technol. 2014. V. 4. № 4. P. 908. https://doi.org/10.1039/c4cy00088a
- Luza L., Rambor C. P., Gual A. et al.// ACS Catalysis. 2017. V. 7. № 4. P. 2791. https://doi.org/10.1021/acscatal.7b00391
- Nikolaev S.A., Smirnov V.V., Vasil’kov A.Y., Podshibikhin V.L. // Kinetics and Catalysis. 2010. Т. 51. № 3. P. 375. https://doi.org/ 10.1134/S0023158410030080
- Hallett-Tapley G.L., D’Alfonso C., Pacioni N.L. et al.// Chem. Commun. 2013. V. 49. № 86. P. 10073. https://doi.org/10.1039/c3cc41669k
- Simakova I.L., Solkina Yu.S., Moroz B.L. et al. // Appl. Catal. A. 2010. V. 385. P. 136. https://doi.org/10.1016/j.apcata.2010.07.002
- Dykman L.A., Khlebtsov N.G. // Acta Naturae. 2011. V. 3. № 2. P. 34. https://doi.org/10.32607/20758251-2011-3-2-34-55
- Zhang Y., Chu W., Foroushani A. D. et al.// Materials. 2014. V. 7. P. 5169. https://doi.org/10.3390/ma7075169
- Lee J. S. // Gold Bulletin. 2010. V. 43. № 3. P. 189. https://doi.org/10.1007/BF03214986
- Ananikov V.P., Khemchyan L.L., Ivanova Y.V. et al. // Russ. Chem. Rev. 2014. V. 83. № 10. P. 885. https://doi.org/10.1070/rcC2014v83n10abeh004471
- Ashraf I., Skandary S., Khaywah M. Y. et al.// Photonics. 2015. V. 2. № 3. P. 838. https://doi.org/10.3390/photonics2030838
- Stolle H.L.K.S., Kluitmann J.J., Csáki A., Köhler J.M., Fritzsche W.S. // Catalysts. 2021. V. 11. P. 1442. https://doi.org/ 0.3390/catal11121442
- Chistyakova P.A., Chistyakov A.V., Nikolaev S.A. et al. // Pet. Chem. 2022. V. 62. P. 1107. https://doi.org/10.1134/S0965544122090018
- Smirnov V.V., Lanin S.N., Nikolaev S.A. et al.// Russ. Chem. Bull. 2005. V. 54. № 10. P. 2286. https://doi.org/10.1007/s11172-006-0111-8
- Grishin M.V., Gatin A.K., Dokhlikova N.V. et al.// Nanotechnol. Russ. 2016. V. 11. № 11–12. P. 727. https://doi.org/ 10.1134/S1995078016060112
- Gatin A.K., Grishin M.V., Dokhlikova N.V. et al. // Russ. Chem. Bull. 2014. V. 63. № 8. P. 1696. https://doi.org/10.1007/s11172-014-0655-y
- Ozaki T. // Phys. Rev. B. 2003. V. 67. P. 155108. https://doi.org/10.1103/Phys/ RevB.67.155108
- Ozaki T., Kino H. // Phys. Rev. B. 2004. V. 69. P. 195113. https://doi.org/10.1103/PhysRevB.69.195113
- Grishin M.V., Baymukhambetova D.T., Gatin A.K. et al.// Khim. Fizika. 2025 V. 44. № 1. P. 44.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



