Regularities of establishing of thermal regimes in countercurrent plug reactor

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a countercurrent liquid–liquid plug reactor, theoretical studies of the implementation of possible types of stationary states were carried out. States such as a stable node and focus, and an unstable focus with a stable limit cycle (oscillations) have been discovered. Using these data, the evolution of stationary states with continuous changes in external control parameters was studied. When the relationship between the flow rates of the phases changes, a structure of stationary states is discovered, which can be realized both at the entrance and exit of the dispersion medium.

全文:

受限制的访问

作者简介

N. Samoilenko

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: shale@icp.ac.ru
俄罗斯联邦, Chernogolovka

K. Shkadinskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: shale@icp.ac.ru
俄罗斯联邦, Chernogolovka

E. Shatunova

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shale@icp.ac.ru
俄罗斯联邦, Chernogolovka

B. Korsunskiy

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: shale@icp.ac.ru
俄罗斯联邦, Chernogolovka

参考

  1. M.M. Slinko, A.G. Makeev. Kinet. Catal. 61, 495 (2020). https://doi.org/10.1134/S0023158420040114
  2. I.S. Yakovenko, I.S. Medvedkov, A.D. Kiverin. Russ. J. Phys. Chem. B 16, 294 (2022). https://doi.org/10.1134/S1990793122020142
  3. F.S. Mederos-Nieto, I. Elizalde-Martínez, F. Trejo-Zárraga et al. Reac. Kinet. Mech. Cat. 131, 613 (2020). https://doi.org/10.1007/s11144-020-01896-4
  4. L.R. Nazmutdinova. Articles of Mechanics Institute of Ufa science centre of the RAS 5, 279 (2007) [in Russian].
  5. S.O. Dorofeenko, E.V. Polianczyk. Russ. J. Phys. Chem. B 16, 242 (2022). https://doi.org/10.1134/S199079312202004X
  6. N.G. Samoilenko, E.N. Shatunova, K.G. Shkadinsky, B.L. Korsunsky, L.V. Kustova. Russ. J. Phys. Chem. B 15, 833 (2021). https://doi.org/10.1134/S1990793121040230
  7. V.I. Kovenskii. Theor. Found. Chem. Eng. 50, 1015 (2016). https://doi.org/10.1134/S0040579516040382
  8. N.G. Samoilenko, E.N. Shatunova, K.G. Shkadinskiy, B.L. Korsunskiy. Russ. J. Phys. Chem. B 16, 1130 (2022). https://doi.org/10.1134/S1990793122060203

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dynamics of thermal regimes and coordinates of the maximum temperature of the dispersion medium depending on the parameter Um at S1 = 0.2.

下载 (140KB)
3. Fig. 2. Characteristic phase trajectories of the reactor reaching the thermal mode at S1 = 0.2: a – node, Um = 0.037; b – stable focus, Um = 0.041; c – oscillatory mode, Um =0.05.

下载 (157KB)
4. Fig. 3. Dynamics of thermal regimes and coordinates of the maximum temperature of the dispersion medium depending on the parameter Um at S1 = 0.4.

下载 (121KB)
5. Fig. 4. Dependence of maximum heating of the dispersion medium and the coordinates of the maximum temperature on the parameter Um at S1 = 0.47.

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2024