On the Nature of the Bar-Shaped X-ray Feature in the Lee Jet of the Vela Pulsar Wind Nebula
- Autores: Fateeva S.S.1, Levenfish K.P.2, Ponomaryov G.A.1,2, Petrov A.E.2, Fursov A.N.1
- 
							Afiliações: 
							- Peter the Great St. Petersburg Polytechnic University
- Ioffe Institute
 
- Edição: Volume 49, Nº 2 (2023)
- Páginas: 130-139
- Seção: Articles
- URL: https://cardiosomatics.ru/0320-0108/article/view/674316
- DOI: https://doi.org/10.31857/S032001082302002X
- EDN: https://elibrary.ru/PZAQZA
- ID: 674316
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
X-ray morphology of pulsar wind nebulae (PWNe) reflects the structure of underlying plasma outflows. This study aims to reveal the nature of one fine X-ray feature in images of the Vela nebula. The feature is shaped like a narrow bar, oriented across the south-eastern jet of the nebula. It is located in the jet at the beginning of its bright middle section (stretching from 
 to 
 from the pulsar) and has an angular size of 
. Within the framework of relativistic MHD modeling, we show that such a bar may be a characteristic feature of Vela-like objects-transonic PWNe with a double-torus X-ray structure seen from the leeward side. Our modeling indicates the shock-wave origin for the bar. The shock is formed in the jet due to its dynamical interaction with two regular toroidal vortices in the lee hemisphere of the nebula. Namely, with large-scale circulation at middle latitudes, and with smaller-scale recirculation within the polar funnel of the pulsar wind termination shock. The former vortex almost dams the lee jet in its far downstream (so the bright middle section of the jet is limited in length by the axial size of the vortex) and the latter chokes the jet at its very beginning. The shock underlying the bar feature occurs immediately after the breakthrough of the supersonic jet through the recirculation. The shock is strong, so it propagates from the jet’s body into the surrounding plasma, and it is quasi-stationary–it can disappear and reappear again at the same place.
Palavras-chave
Sobre autores
S. Fateeva
Peter the Great St. Petersburg Polytechnic University
														Email: a.e.petrov@mail.ioffe.ru
				                					                																			                												                								St. Petersburg, Russia						
K. Levenfish
Ioffe Institute
														Email: a.e.petrov@mail.ioffe.ru
				                					                																			                												                								St. Petersburg, Russia						
G. Ponomaryov
Peter the Great St. Petersburg Polytechnic University; Ioffe Institute
														Email: a.e.petrov@mail.ioffe.ru
				                					                																			                												                								St. Petersburg, Russia; St. Petersburg, Russia						
A. Petrov
Ioffe Institute
														Email: a.e.petrov@mail.ioffe.ru
				                					                																			                												                								St. Petersburg, Russia						
A. Fursov
Peter the Great St. Petersburg Polytechnic University
							Autor responsável pela correspondência
							Email: a.e.petrov@mail.ioffe.ru
				                					                																			                												                								St. Petersburg, Russia						
Bibliografia
- Aмато (E. Amato), arxiv:2001.04442 (2020).
- Боговалов С.В., Хангулян Д.В., Письма в Астрон. журн. 28, 425 (2002а) [S.V. Bogovalov and D.V. Khangoulyan), Astron. Lett. 28, 373 (2002а)].
- Боговалов, Хангулян (S.V. Bogovalov and D.V. Khangoulian), MNRAS 336, L53 (2002б).
- Бюлер, Блэндфорд (R. Bühler and R. Blandford), Rep. Prog. Phys. 77, Iss. 6, id. 066901 (2014).
- Бюлер, Джиоми (R. Bühler and M. Giomi), MNRAS 462, 2762 (2016).
- Быков и др. (A.M. Bykov, E. Amato, A.E. Petrov, A.M. Krassilchtchikov, and K.P. Levenfish), Space Sci. Rev. 207, 235 (2017).
- Гельфанд и др. (D.J. Helfand, E.V. Gotthelf, and J.P. Halpern), Astrophys. J. 556, 380 (2001).
- Гуо и др. (F. Guo, X. Li, W. Daughton, et al.), Astrophys. J. 919, 111 (2021).
- Дель Занна и др. (L. Del Zanna, E. Amato, and N. Bucciantini), Astron. Astrophys. 421, 1063 (2004).
- Дель Занна и др. (L. Del Zanna, D. Volpi, E. Amato, and N. Bucciantini), Astron. Astrophys. 453, 621 (2006).
- Додсон и др. (R. Dodson, D. Lewis, D. McConnel, and A.A. Deshpande), MNRAS 343, 116 (2003).
- Камю и др. (N.F. Camus, S.S. Komissarov, N. Bucciantini, and P.A. Hughes), MNRAS 400, 1241 (2009).
- Каргальцев и др. (O. Kargaltsev, B. Cerutti, Yu. Lyubarsky, and E. Striani), Space Sci. Rev. 191, 391 (2015).
- Комиссаров, Любарский (S.S. Komissarov and Y.E. Lyubarsky), MNRAS 349, 779 (2004).
- Комиссаров (S.S. Komissarov), MNRAS 428, 2459 (2013).
- Коронити (F.V. Coroniti), Astrophys. J. 349, 538 (1990).
- Кси и др. (F. Xie, A. Di Marco, F. La Monaca, K. Liu, F. Muleri, N. Bucciantini, R.W. Romani, E. Costa, et al.), Nature 612, 658 (2022).
- Левенфиш и др. (K.P. Levenfish, A.M. Bykov, M. Durant, O.Y. Kargaltsev, Y.A. Kropotina, G.G. Pavlov, A.M. Krassilchtchikov, and A.A. Uvarov), Mem. S. A. It. 84, 588 (2013).
- Левенфиш и др. (K.P. Levenfish, G.A. Ponomaryov, A.E. Petrov, A.M. Bykov, and A.M. Krassilchtchikov), J. Phys.: Conf. Ser. 2103, 012020 (2021).
- Любарский (Y.E. Lyubarsky), MNRAS 329, L34 (2002).
- Любарский (Y.E. Lyubarsky), MNRAS 345, 153 (2003).
- Миньоне и др. (A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari), Astrophys. J. Suppl. Ser. 170, 228 (2007).
- Олми, Буккиантини (B. Olmi and N. Bucciantini), eprint arXiv:2301.12903 (2023). https://doi.org/10.48550/arXiv.2301.12903.
- Олми и др. (B. Olmi, L. Del Zanna, E. Amato, N. Bucciantini, and A. Mignone), J. Plasma Phys. 82 635820601 (2016).
- Павлов и др. (G.G. Pavlov, O. Kargaltsev, D. Sanwal, and G.P. Garmire), Astrophys. J. 554, L189 (2001).
- Павлов и др. (G.G. Pavlov, M.A. Teter, O. Kargaltsev, and D. Sanwal), Astrophys. J. 591, 1157 (2003).
- Пономарёв и др. (G.A. Ponomaryov, K.P. Levenfish, A.M. Krassilchtchikov, Yu.A. Kropotina, and A.E. Petrov), J. Phys.: Conf. Ser. 1038, 012013 (2018).
- Пономарёв и др. (G.A. Ponomaryov, K.P. Levenfish, and A.E. Petrov), J. Phys.: Conf. Ser. 1400, 022027 (2019).
- Пономарёв и др. (G.A. Ponomaryov, K.P. Levenfish, A.E. Petrov, and Yu.A. Kropotina), J. Phys.: Conf. Ser. 1697, 012022 (2020).
- Пономарёв и др. (G.A. Ponomaryov, K.P. Levenfish, and A.E. Petrov), J. Phys.: Conf. Ser. 2103, 012021 (2021).
- Пономарёв Г.А., Фурсов А.Н., Фатеева С.С. и др., Письма в Астрон. журн., в печати (2023).
- Порт и др. (O. Porth, S.S. Komissarov, and R. Keppens), MNRAS 438, 278 (2014).
- Рейнольдс и др. (S.P. Reynolds, G.G. Pavlov, O. Kargaltsev, et al.), Space Sci. Rev. 191, 391 (2017).
- Сирони, Спитковский (L. Sironi and A. Spitkovsky), Astrophys. J. 741, 39 (2011).
- Черутти, Джьячинти (B. Cerutti and G. Giacinti), Astron. Astrophys. 656, id. A91 (2021).
- Черутти и др. (B. Cerutti, A.A. Philippov, and G. Dubus), Astron. Astrophys. 642, id. A204 (2020).
- Шевалье, Рейнольдс (R.A. Chevalier and S.P. Reynolds), Astrophys. J. 740, 26 (2011).
- Хестер и др. (J.J. Hester, K. Mori, D. Burrows, J.S. Gallagher, J.R. Graham, M. Halverson, A. Kader, F.C. Michel, and P. Scowen), Astrophys. J. 577, L49 (2002).
- Хестер (J.J. Hester), Ann. Rev. Astron. Astrophys. 46, 127 (2008).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
