Изменение параметров вибрации конструкции летательных аппаратов при росте их акустического нагружения
- Авторы: Попов П.А.1,2
- 
							Учреждения: 
							- АО «Ракетно-космический центр «Прогресс»»
- Самарский университет
 
- Выпуск: Том 70, № 5 (2024)
- Страницы: 740-746
- Раздел: АКУСТИЧЕСКАЯ ЭКОЛОГИЯ. ШУМЫ И ВИБРАЦИИ
- URL: https://cardiosomatics.ru/0320-7919/article/view/648433
- DOI: https://doi.org/10.31857/S0320791924050088
- EDN: https://elibrary.ru/XBHMFP
- ID: 648433
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Представлены результаты анализа экспериментальных данных, позволяющие выявить поведение параметров колебания конструкции при изменении амплитуды акустического давления с помощью введенного в рассмотрение понятия проводимости акустической вибрации. Подтверждается нелинейное поведение вибрационного отклика конструкции разных отсеков ракеты и сегмента панели при нагружении их полем акустического давления. Обнаружены общие закономерности нелинейности, в частности, показано, что проводимость имеет тенденцию к понижению при росте акустической нагрузки, близкую в основном к степенной функции.
Полный текст
 
												
	                        Об авторах
П. А. Попов
АО «Ракетно-космический центр «Прогресс»»; Самарский университет
							Автор, ответственный за переписку.
							Email: banduir@rambler.ru
				                					                																			                												                	Россия, 							Самара; Самара						
Список литературы
- Абдрашитов Р.Г., Иванушкин Е.А., Логинов Г.М., Попов О.Ю., Шарунов А.В. Расчетно-экспериментальные исследования звукоизоляции подвесных контейнеров // Тезисы докладов пятой открытой Всероссийской (XVII научно-технической) конференции по аэроакустике (25–29 сентября 2017 г.). С. 213–215.
- Карачун В.В., Мельник В.Н. Основные причины шума ракет-носителей // Авиационно-космическая техника и технология. 2007. № 9 (45). С. 7.
- Ефимцов Б.М. Применение энергетического статистического метода для оценки акустического излучения пластин при псевдозвуковом нагружении // Труды ЦАГИ. 1978. Вып. 1902. С. 3–8.
- Ефимцов Б.М. Критерий подобия спектров пристеночных пульсаций давления турбулентного пограничного слоя // Акуст. журн. 1984. Т. 30. № 1. С. 58–61.
- Муякшин С.И., Диденкулов И.Н., Вьюгин П.Н., Чернов В.В., Денисов Д.М. Исследование метода обнаружения и локализации неоднородностей в пластинах с использованием волн Лэмба // Акуст. журн. 2021. Т. 67. № 3. С. 270–274.
- Котельникова Л.М., Николаев Д.А., Цысарь С.А., Сапожников О.А. Определение упругих свойств твердотельного шара по результатам рассеяния на нем акустического пучка // Акуст. журн. 2021. Т. 67. № 3. С. 371–386.
- Ansys. User’s Guide. Introduction to Acoustics / Lectures 1–7. 2016. 415 p.
- Actran 19. User’s Guide. Installation, Operations, Theory and Utilities / Vol. 1. 2018. 862 p.
- Actran 19. User’s Guide. Extended DAT (EDAT) Input File Syntax / Vol. 2. 2018. 756 p.
- http://storage.ansys.com/doclinks/ansys.html?code=Acoustic_DiffuseSoundField-ALU-K2a
- Могилевич Л.И., Блинков Ю.А., Иванов С.В. Волны деформации в нелинейных соосных оболочках, заполненных вязкой несжимаемой жидкостью // Акуст. журн. 2021. Т. 67. № 5. С. 467-474.
- Боголепов И.И. Промышленная звукоизоляция. Л.: Судостроение, 1986. 367 с.
- Биргер И.А., Пановко Я.Г. Прочность, устойчивость, колебания. Т. 2. Справочник в трех томах. М.: Машиностроение, 1968. С. 148.
- Мунин А.Г. Авиационная акустика. В 2-х частях. Ч. 2. Шум в салонах пассажирских самолетов. М.: Машиностроение, 1986. 264 с.
- Иванов Н.И. Инженерная акустика. Теория и практика борьбы с шумом. М.: Университетская книга, Логос, 2008. 424 с.
- Попов П.А., Иголкин А.А., Шахматов Е.В. Оценка изменения звукоизоляционных характеристик силовых панелей при их высокоинтенсивном акустическом нагружении // Проблемы машиностроения и надежности машин. 2022. № 2. С. 68–79.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 







