Heat Conduction of Linear Chain of Dust Particles
- Authors: Ignatov A.M.1
- 
							Affiliations: 
							- Prokhorov General Physics Institute of the Russian Academy of Sciences
 
- Issue: Vol 49, No 4 (2023)
- Pages: 359-368
- Section: ПЫЛЕВАЯ ПЛАЗМА
- URL: https://cardiosomatics.ru/0367-2921/article/view/668568
- DOI: https://doi.org/10.31857/S0367292122601412
- EDN: https://elibrary.ru/NAHNVD
- ID: 668568
Cite item
Abstract
The effect is theoretically studied of nonreciprocity of interparticle forces on the energy exchange between the linear chain of dust particles and the ambient medium. It is shown that the energy exchange between the dust component and ion flow is important. When approaching the threshold for developing the instability of coupled waves, the considerable deviation occurs of the kinetic energy distribution from the law of equipartition of kinetic energy over degrees of freedom. In the case of inhomogeneous heating of the chain, the heat conduction coefficient does not depend on the number of particles and is determined by the parameters of the ambient plasma
Keywords
About the authors
A. M. Ignatov
Prokhorov General Physics Institute of the Russian Academy of Sciences
							Author for correspondence.
							Email: aign@fpl.gpi.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Комплексная и пылевая плазма / Ред. Фортов В.Е., Морфилл Г.Е. М.: Физматлит, 2012.
- Tsytovich V.N., Morfill G.E., Vladimirov S.V., Tho-mas H.M. Elementary Physics of Complex Plasmas. Lect. Notes Phys. 731. Belin, Heidelberg: Springer, 2008.
- Vladimirov S.V., Ostrikov K., Samarian A.A. Physics and Applications of Complex Plasmas. Imperial College Press, 2005.
- Фортов В.Е., Ваулина О.С., Петров О.Ф., Шахо-ва И.А., Гавриков А.В., Хрусталев Ю.В. // Физика плазмы. 2006. Т. 32. С. 352.
- Fortov V.E., Vaulina O.S., Petrov O.F., Vasiliev M.N., Gavrikov A.V., Shakova I.A., Vorona N.A., Khrusta-lyov Yu.V., Manohin A.A., Chernyshev A.V. // Phys. Rev. E. 2007. V. 75. P. 026403.
- Nunomura S., Samsonov D., Zhdanov S., Morfill G. // Phys. Rev. Lett. 2005. V. 95. P. 025003.
- Nosenko V., Goree J., Piel A. // Phys. Plasmas. 2006. V. 13. P. 032106.
- Nosenko V., Zhdanov S., Ivlev A.V., Morfill G., Goree J., Piel A. // Phys. Rev. Lett. 2008. V. 100. P. 025003.
- Hou L.-J., Piel A. // J. Phys. A. 2009. V. 42. P. 214025.
- Khrustalyov Yu.V., Vaulina O.S. // Phys. Rev. E. 2012. V. 85. P. 046405.
- Хрусталев Ю.В., Ваулина О.С. // ЖЭТФ. 2013. Т. 143. С. 1009.
- Kudelis G., Thomsen H., Bonitz M. // Phys. Plasmas. 2013. V. 20. P. 073701.
- Shahzad A., He M.-G. // Phys. Plasmas. 2015. V. 22. P. 123707.
- Shahzad A., Kashif M., Munir T., He M., Tu X. // Phys. Plasmas. 2020. V. 27. P. 103702.
- Khrapak S.A. // Phys. Plasmas. 2021. V. 28. P. 010704.
- Khrapak S.A. // Phys. Plasmas. 2021. V. 28. P. 084501.
- Игнатов А.М. // Физика плазмы. 2020. Т. 46. С. 213.
- Reider Z., Lebowitz J.L., Lieb E. // J. Math. Phys. 1967. V. 8. P. 1073.
- Lepri S., Livi R., Politi A. // Phys. Rep. 2003. V. 377. P. 1.
- Игнатов А.М. // Физика плазмы. 2019. Т. 45. С. 825.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					







