Real-Time Plasma Magnetic Control System with Equilibrium Reconstruction Algorithm in the Feedback for the Globus-M2 Tokamak
- Autores: Konkov A.E.1, Korenev P.S.1, Mitrishkin Y.V.1,2, Balachenkov I.M.3, Kiselev E.O.3
- 
							Afiliações: 
							- Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
- Moscow State University
- Ioffe Institute, Russian Academy of Sciences
 
- Edição: Volume 49, Nº 12 (2023)
- Páginas: 1348-1356
- Seção: TOKAMAKS
- URL: https://cardiosomatics.ru/0367-2921/article/view/668901
- DOI: https://doi.org/10.31857/S0367292123600760
- EDN: https://elibrary.ru/APGEWX
- ID: 668901
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
To control the plasma shape during a tokamak discharge, it is necessary to calculate the plasma
shape in real-time. The rate requirements for the shape calculations are especially high for tokamaks with a
small radius, such as Globus-M2 (St. Petersburg, Russia). A real-time magnetic plasma control system for
the Globus-M2 tokamak with flux and current distribution identification (FCDI) algorithm for the plasma
equilibrium reconstruction in feedback is presented. The control system contains discrete one-dimensional
and matrix proportional-integral-derivative controllers synthesized by the matrix inequality method using
the plasma LPV model calculated on experimental data, and carries out the coordinated control of the plasma
position and shape as well as the compensation for the scattered field of the central solenoid. The FCDI algorithm
is improved for the operation in the real-time mode, and makes it possible to reconstruct the plasma
shape in 20 μs. The digital control system with a feedback algorithm was simulated on a real-time test bench,
consisting of two Speedgoat Performance Real-Time Target Machines (RTTM), and demonstrated the average
Task Execution Time (TET) value in 67 μs.
Sobre autores
A. Konkov
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
														Email: konkov@physics.msu.ru
				                					                																			                												                								Moscow, Russia						
P. Korenev
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences
														Email: pkorenev@ipu.ru
				                					                																			                												                								Moscow, Russia						
Yu. Mitrishkin
Trapeznikov Institute of Control Sciences, Russian Academy of Sciences; Moscow State University
														Email: pkorenev@ipu.ru
				                					                																			                												                								Moscow, Russia; Moscow, Russia						
I. Balachenkov
Ioffe Institute, Russian Academy of Sciences
														Email: pkorenev@ipu.ru
				                					                																			                												                								St. Petersburg, Russia						
E. Kiselev
Ioffe Institute, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: pkorenev@ipu.ru
				                					                																			                												                								St. Petersburg, Russia						
Bibliografia
- Ferron J., Walker M., Lao L., John H.S., Humphreys D., Leuer J. // Nuclear Fusion. 1998. T. 38. C. 1055. https://doi.org/10.1088/0029-5515/38/7/308
- Moret J.-M., Duval B., Le H., Coda S., Felici F., Reimerdes H. // Fusion Engineering and Design. 2015. T. 91. C. 1. https://doi.org/10.1016/j.fusengdes.2014.09.019
- Huang Y., Xiao B., Luo Z., Yuan Q. // Fusion Engineering and Design. 2018. T. 128. C. 82. https://doi.org/10.1016/j.fusengdes.2018.01.043
- Minaev V.B., Gusev V.K., Sakharov N.V., Varfolome-ev V.I. // Nuclear Fusion. 2017. T. 57. C. 066047. https://doi.org/10.1088/1741-4326/aa69e0
- Коренев П.С., Коньков А.Е., Митришкин Ю.В., Балаченков И.М., Киселев Е.О., Минаев В.Б., Сахо-ров Н.В., Петров Ю.В. // Письма ЖТФ. 2023. Т. 49. С. 36. https://doi.org/10.21883/PJTF.2023.07.54920.19468
- Mitrishkin Y.V., Korenev P.S., Kartsev N.M., Kuzne-tsov E.A., Prokhorov A.A., Patrov M.I. // Control Engineering Practice. 2019. T. 87. C. 97. https://doi.org/10.1016/j.conengprac.2019.03.018
- Mitrishkin Y.V., Prokhorov A.A., Korenev P.S., Pat-rov M.I. // Control Engineering Practice. 2020. T. 100. C. 104446. https://doi.org/10.1016/j.conengpraс.2020.104446
- Konkov A.E., Mitrishkin Y.V., Korenev P.S., Patrov M.I. // IFACPapersOnLine. 2020. T. 53. C. 7344. https://doi.org/10.1016/j.ifacol.2020.12.1000
- Ariola M., Pironti A. Magnetic Control of Tokamak Plasmas. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-29890-0
- Wesson J., Campbell D. Tokamaks. Clarendon Press, 2004. (International series of monographs on physics).
- Хайрутдинов Р.Р., Лукаш В.Э., Пустовитов В.Д. // Физика плазмы. 2021. Т. 47. С. 1007. https://doi.org/10.31857/s0367292121120039
- Пустовитов В.Д. // Физика плазмы. 2019. Т. 45. С. 1088. https://doi.org/10.1134 / s0367292119120072
- Swain D., Neilson G. // Nuclear Fusion. 1982. T. 22. C. 1015. https://doi.org/10.1088/0029-5515/22/8/002
- Kuznetsov Y., Nascimento I., Galvao R., Yasin I. // Nuclear Fusion. 1998. T. 38. C. 1829. https://doi.org/10.1088/0029-5515/38/12/308
- Forsythe G., Malcolm M.M.C. Computer methods for mathematical computations. USA, NJ: Englewood Cliffs, 1977.
- Mitrishkin Y.V., Korenev P.S., Konkov A.E., Kruzhkov V.I., Ovsiannikov N.E. // Mathematics. 2021. T. 10. C. 40. https://doi.org/10.3390/math10010040
- Boyd S., Hast M., Åström K.J. // Intern. J. Robust Nonlinear Control. 2016. T. 26. T. 1718. https://doi.org/10.1002/rnc.3376.11
- Mitrishkin Y., Korenev P., Konkov A., Kartsev N., Smir-nov I. // Fusion Engineering and Design. 2022. T. 174. C. 112993. https://doi.org/10.1016/j.fusengdes.2021.112993
- Konkov A.E., Mitrishkin Y.V. // IFAC-PapersOnLine. 2022. T. 55. C. 327. https://doi.org/10.1016/j.ifacol.2022.07.057
- Митришкин Ю., Коньков А., Коренев П. // Устойчивость и колебания нелинейных систем управления (конференция Пятницкого): Материалы XVI Международной конференции. 2022. С. 286.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






