Research of the Binding of an Argon Arc to the Cathode in a DC Plasma Torch
- Autores: Gadzhiev M.K.1, Sargsyan M.A.1, Tyuftyaev A.S.1, Karchugaeva Z.G.1, Tereshonok D.V.1
- 
							Afiliações: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
 
- Edição: Volume 49, Nº 5 (2023)
- Páginas: 476-479
- Seção: LOW TEMPERATURE PLASMA
- URL: https://cardiosomatics.ru/0367-2921/article/view/668541
- DOI: https://doi.org/10.31857/S0367292123700233
- EDN: https://elibrary.ru/VFYGOK
- ID: 668541
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Experiments were carried out to study the stable attachment of an atmospheric pressured argon dc arc to the surface of pure, thoriated and lanthanated tungsten. Using spectroscopic methods electron temperatures and concentrations were obtained in the positive plasma column near the cathode. With a current of 200 A and a plasma gas flow rate of 1.5 g/s, the average values of temperatures were Te ~ 2.6 eV for pure tungsten, Te ~ 2 eV for thoriated and lanthanated tungesten, and concentrations ne ~ 1017 cm–3. In these experiments, the cathode with an insert of lanthanated tungsten (3100 K) had the lowest working surface temperature due to the lower effective work function, while for thoriated and pure tungsten surface temperatures were 3300 and 3800 K, respectively. It was found that at a current of 200 A, the tip of the pure tungsten cathode was in the liquid phase, in contrast to thoriated and lanthanated tungsten that remained in solid phase.
Palavras-chave
Sobre autores
M. Gadzhiev
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: antipov@ihed.ras.ru
				                					                																			                												                								125412, Moscow, Russia						
M. Sargsyan
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: m.sargsyan86@mail.ru
				                					                																			                												                								125412, Moscow, Russia						
A. Tyuftyaev
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: m.sargsyan86@mail.ru
				                					                																			                												                								125412, Moscow, Russia						
Z. Karchugaeva
Joint Institute for High Temperatures, Russian Academy of Sciences
														Email: m.sargsyan86@mail.ru
				                					                																			                												                								125412, Moscow, Russia						
D. Tereshonok
Joint Institute for High Temperatures, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: m.sargsyan86@mail.ru
				                					                																			                												                								125412, Moscow, Russia						
Bibliografia
- Коротеев А.С., Миронов В.М., Свирчук Ю.С. Плазмотроны: конструкции, характеристики, расчет. М.: Машиностроение, 1993. С. 296.
- Жуков М.Ф., Засыпкин И.М., Тимошевский А.Н., Михайлов Б.И., Десятков Г.А. Электродуговые генераторы термической плазмы. Низкотемпературная плазма. Т. 17. Новосибирск: Наука, СП РАН, 1999. С. 712.
- Цыдыпов Б.Д. // Теплофизика и аэромеханика. 2007. Т. 14. С. 269.
- Полищук В.П. // ТВТ. 2005. Т. 43. С. 11.
- Benilov M.S., Carpaij M., Cunha M.D. // J. Phys. D: Appl. Phys. 2006. V. 39. P. 2124.
- Ortega D., Sillero Marin J.A., Munoz-Serrano E., Casado E. // J. Phys. D: Appl. Phys. 2009. V. 42. P. 085202.
- Gleizes A. // Plasma Chem. Plasma Process. 2015. V. 35. P. 455.
- Murphy A.B. // Plasma Chem. Plasma Process. 2015. V. 35. P. 471.
- Benilov M.S. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 144001.
- Райзер Ю.П. Физика газового разряда. 3-е изд. М., 2009. С. 736.
- Haidar J., Farmer A.J.D. // J. Phys. D: Appl. Phys. 1994. V. 27. P. 555.
- Sillero J.A., Ortega D., Munoz-Serrano E., Casado E. // J. Phys. D: Appl. Phys. 2010. V. 43. P. 185204.
- Gadzhiev M.Kh., Sargsyan M.A., Tereshonok D.V., Tyuftyaev A.S. // EPL. 2015. V. 111. P. 25001.
- Пустогаров А.В., Колесниченко А.Н., Гаврюшенко Б.С., Захаркин Р.Я., Драган В.Д. // ТВТ. 1973. Т. 11. С. 174.
- Haidar J., Farmer A.J.D. // Rev. Sci. Instrum. 1993. V. 64. P. 542.
- Haidar J. // J. Phys. D: Appl. Phys. 1995. V. 28. P. 2494.
- Исакаев Э.Х., Тюфтяев А.С., Гаджиев М.Х. // Физика и химия обработки материалов. 2016. № 3. С. 27.
- Гаджиев М.Х., Куликов Ю.М., Сон Э.Е., Тюфтя-ев А.С., Саргсян М.А., Юсупов Д.И. // ТВТ. 2020. Т. 58. С. 15.
- Konjevic N., Lesage A., Fuhr J.R., Wiese W.L. // J. Phys. Chem. Ref. Data. 2002. V. 31. P. 819.
- Goryachev S.V., Isakaev E.H., Myasnikov M.I., Chin-nov V.F. // High Temperatures. 2008. V. 46. P. 1.
- Cagran C., Brunner C., Seifteru A., Pottlacher G. // High Temperatures–High Pressures. 2002. V. 34 (6). P. 669.
- Cagran C., Pottlacher G., Rink M., Bauer W. // Internat. J. Thermophysics. 2005. V. 26 (4). P. 1001.
- Gadzhiev M.Kh., Sargsyan M.A., Tereshonok D.V., Tyuf-tyaev A.S. // Europ. Phys. Lett. 2015. V. 111. P. 25001.
- Gadzhiev M.Kh., Sargsyan M.A., Tereshonok D.V., Tyuf-tyaev A.S. // Europ. Phys. Lett. 2016. V. 115. P. 35002.
- Sargsyan M.A., Tereshonok D.V., Valyano G.E., Scherbakov V.V., Konovalov P.A., Gadzhiev M.Kh. // Phys. Plasmas. 2020. V. 27. P. 023506.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



