On the study of the space metrics signature from correlations of particles in hadron interactions
- Autores: Mukhamedshin R.A.1
- 
							Afiliações: 
							- Institute for Nuclear Research of the Russian Academy of Sciences
 
- Edição: Volume 87, Nº 7 (2023)
- Páginas: 962-965
- Seção: Articles
- URL: https://cardiosomatics.ru/0367-6765/article/view/654347
- DOI: https://doi.org/10.31857/S0367676523701685
- EDN: https://elibrary.ru/OOIAQY
- ID: 654347
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Long-range near-side “ridge” effect discovered by the CMS Collaboration at the LHC, and the coplanarity of subcores in gamma-ray-hadron families, can be reproduced in the framework of the coplanar generation of the most energetic hadrons in hadron interactions, explained, in particular, by the hypothesis of change of the signature of the metric of the space-time continuum, namely, the transformation of the basic three-dimensional state into two-dimensional one (3D ↔ 2D). A method is proposed for experimental verification of this hypothesis by studying the azimuthal correlations of particles in hadron interactions.
Sobre autores
R. Mukhamedshin
Institute for Nuclear Research of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: rauf_m@mail.ru
				                					                																			                												                								Russia, 117312, Moscow						
Bibliografia
- Borisov A.S. et al. (Pamir Collaboration) // Proc. 4th ISVHECRI. (Beijing, 1986). P. 4.
- Иваненко И.П., Копенкин В.В., Манагадзе А.К. и др. // Письма в ЖЭТФ. 1992. Т. 50. № 11. С. 192.
- Kopenkin V.V., Managadze A.K., Rakobolskaya I.V. et al. // Phys. Rev. D. 1995. V. 52. P. 2766.
- Pamir Collaboration // Preprint INP MSU. 89-67/144. 1989.
- Borisov A.S., Mukhamedshin R.A., Puchkov V.S. et al. // Nucl. Phys. B. Proc. Suppl. 2001. V. 97. P. 118.
- Xue L., Dai Z.Q., Li J.Y. et al. // Proc. 26th ICRC. V. 1. (Salt Lake City, 1999) P. 127.
- Apanasenko A.V., Dobrotin N.A., Goncharova L.A. et al. // Proc. 15th ICRC. V. 7. (Plovdiv, 1977) P. 220.
- Osedlo V.I., Rakobolskaya I.V., Galkin V.I. et al. // Proc. 27th ICRC. V. 1. (Hamburg, 2001) P. 1426.
- Capdevielle J.N. // J. Phys. G. 1988. V. 14. P. 503.
- Mukhamedshin R.A. // JHEP. 2005. V. 0505. P. 049.
- Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 2009. V. 196C. P. 98.
- Манагадзе А.К., Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2013. Т. 77. № 11. С. 1573; Managadze A.K, Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. No. 11. P. 1315.
- Royzen I.I. // Mod. Phys. Lett. A. 1994. V. 9. No. 38. P. 3517.
- Capdevielle J.N. // Nucl. Phys. B. Proc. Suppl. 2008. V. 175. P. 137.
- Yuldashbaev T.S., Nuritdinov Kh., Chudakov V.M. // Nuovo Cimento. 2001. V. 24C. P. 569.
- Mukhamedshin R.A. // Nucl. Phys. B. Proc. Suppl. 1999. V. 75A. P. 141.
- Wibig T. // arXiv: hep-ph/0003230. 2000.
- Anchordoqui L., Dai D.C., Fairbairn M. et al. // Mod. Phys. Lett. A. 2012. V. 27. Art. No. 1250021.
- Stojkovic D. // arXiv:1406.2696v1 [gr-qc]. 2014.
- The CMS Collaboration // arXiv:1009.4122v1 [hep-ex]. 2010.
- Mukhamedshin R.A. // Eur. Phys. J. Plus. 2019. V. 134. P. 584.
- Mukhamedshin R.A., Sadykov T. // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012089.
- Mukhamedshin R.A. // Eur. Phys. J. C. 2022. V. 82. P. 155.
- Мухамедшин Р.А. // Изв. РАН. Сер. физ. 2021. Т. 85. № 4. С. 534; Mukhamedshin R.A. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 4. P. 402.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


