Efficiency of mechanisms for the formation of sporadic Forbush decreases

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

From the measurements of the neutron monitors world network in the period 1996–2018, 31 strong Forbush decreases (>5%) were identified that satisfy the accepted event selection criterion. The superposed epoch analyses is used to determine the consistent spatial distributions of the solar wind parameters and the decrease in cosmic ray density. It has been established that the contributions of the formation mechanisms of the Forbush decrease differ greatly in two groups of events. The difference may be since the formation of the Forbush depression in one group occurs in the frontal part, and in the other group in the peripheral part of the disturbance.

Sobre autores

A. Petukhova

Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy
of Sciences – a separate subdivision of the Federal Research Center “Yakutsk Scientific Center
of the Siberian Branch of the Russian Academy of Sciences”

Email: i_van@ikfia.ysn.ru
Russia, 677027, Yakutsk

I. Petukhov

Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy
of Sciences – a separate subdivision of the Federal Research Center “Yakutsk Scientific Center
of the Siberian Branch of the Russian Academy of Sciences”

Autor responsável pela correspondência
Email: i_van@ikfia.ysn.ru
Russia, 677027, Yakutsk

S. Petukhov

Shafer Institute of Cosmophysical Research and Aeronomy of the Siberian Branch of the Russian Academy
of Sciences – a separate subdivision of the Federal Research Center “Yakutsk Scientific Center
of the Siberian Branch of the Russian Academy of Sciences”

Email: i_van@ikfia.ysn.ru
Russia, 677027, Yakutsk

Bibliografia

  1. Kilpua E., Koskinen H.E.J., Pulkkinen T.I. // Living Rev. Solar Phys. 2017. V. 14. No. 1. P. 5.
  2. Lockwood J.A., Webber W.R., Debrunner H. // J. Geophys. Res. 1991. V. 96. P. 11587.
  3. Krittinatham W., Ruffolo D. // The Astrophys. J. 2009. V. 704. No. 1. P. 831.
  4. Benella S., Laurenza M., Vainio R. et al. // The Astrophys. J. 2020. V. 901. P. 21.
  5. Laitinen T., Dalla S. // 43rd COSPAR Sci. Assembly. (Sydney, 2021). Art. No. 866.
  6. Петухов И.С., Петухов С.И. // Изв. РАН. Сер. физ. 2015. Т. 79. № 5. С. 694; Petukhov I.S., Petukhov S.I. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 5 P. 640.
  7. Petukhova A.S., Petukhov I.S., Petukhov S.I. // The Astrophys. J. 2019. V. 880. P. 17.
  8. Petukhova A., Petukhov I., Petukhov S. // Space Weather. 2020. V. 18. Art. No. e2020SW002616.
  9. Badruddin, Venkatesan D., Zhu B.Y. // Solar Phys. 1991. V. 134. P. 203.
  10. Richardson I.G., Cane H.V. // Solar Phys. 2011. V. 270. No. 2. P. 609.
  11. Белов А.В., Абунин А.А., Абунина М.А. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 5. С. 691; Belov A.V., Abunin A.A., Abunina M.A. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. No. 5. P. 637.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © А.С. Петухова, И.С. Петухов, С.И. Петухов, 2023