The study of electronic kinetics of molecular nitrogen in the Titan’s middle atmosphere during the precipitation of cosmic rays

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The kinetics of the \({{{\text{A}}}^{3}}\Sigma _{u}^{ + },\) B3Πg, W3Δu, \({{{\text{B}}}^{{{\text{'}}3}}}\Sigma _{u}^{ - },\) and C3Πu triplet states of molecular nitrogen at the heights of the middle atmosphere of Titan during action of cosmic rays into the atmosphere has been studied. The calculations consider the intramolecular and intermolecular electron energy transfer during inelastic collisions of electronically excited molecular nitrogen with N2, CH4, and CO molecules. The interaction of electronically excited N2 molecules with molecules of acetylene C2H2 and ethylene C2H4 in the middle atmosphere of Titan at altitudes of 50–250 km has been studied. For the first time, the dominance of reactions with metastable molecular nitrogen N2(\({{{\text{A}}}^{3}}\Sigma _{u}^{ + }\)) in the formation of C2H and C2H3 radicals at these heights has been shown.

Sobre autores

A. Kirillov

Polar Geophysical Institute

Autor responsável pela correspondência
Email: kirillov@pgia.ru
Russia, 184209, Apatity

R. Werner

Space Research and Technology Institute of the Bulgarian Academy of Sciences

Email: kirillov@pgia.ru
Bulgaria, 1113, Stara Zagora

V. Guineva

Space Research and Technology Institute of the Bulgarian Academy of Sciences

Email: kirillov@pgia.ru
Bulgaria, 1113, Stara Zagora

Bibliografia

  1. Lebonnois S., Bakes E.L.O., McKay C.P. // Icarus. 2002. V. 159. No. 2. P. 505.
  2. Wilson E.H., Atreya S.K. // Planet. Space Sci. 2003. V. 51. No. 14-15. P. 1017.
  3. Lavvas P.P., Coustenis A., Vardavas I.M. // Planet. Space Sci. 2008. V. 56. No. 1. P. 27.
  4. Vuitton V., Dutuit O., Smith M., Balucani N. // In: Titan: interior, surface, atmosphere and space environment. Ch.7. Cambridge Univ. Press, 2014. P. 224.
  5. Vuitton V., Yelle R.V., Klippenstein S.J. et al. // Icarus. 2019. V. 324. P. 120.
  6. Krasnopolsky V.A. Spectroscopy and photochemistry of planetary atmospheres and ionospheres. Ch. 13. Cambridge University Press, 2019.
  7. Capone L.A., Dubach J., Whitten R.C. et al. // Icarus. 1980. V. 44. No. 1. P. 72.
  8. Capone L.A., Dubach J., Prasad S.S., Whitten R.C. // Icarus. 1983. V. 55. No. 1. P. 73.
  9. Molina-Cuberos G.J., López-Moreno J.J., Rodrigo R. et al. // Planet. Space Sci. 1999. V. 47. No. 10-11. P. 1347.
  10. Русанов В.Д., Фридман А.А. Физика химически активной плазмы. М.: Наука, 1984. 415 с.
  11. Kirillov A.S., Werner R., Guineva V. // Chem. Phys. Lett. 2017. V. 685. P. 95.
  12. Кириллов А.С. // Астрон. вестн. 2020. Т. 54. № 1. С. 33.
  13. Кириллов А.С., Вернер Р., Гинева В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 3. С. 414; Kirillov A.S., Werner R., Guineva V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3. P. 335.
  14. Gilmore F.R., Laher R.R., Espy P.J. // J. Phys. Chem. Ref. Data. 1992. V. 21. No. 5. P. 1005.
  15. Sharipov A.S., Loukhovitski B.I., Starik A.M. // J. Phys. Chem. A. 2016. V. 120. No. 25. P. 4349.
  16. Kirillov A.S. // Chem. Phys. Lett. 2016. V. 643. P. 131.
  17. Kirillov A.S. // Ann. Geophys. 2008. V. 26. No. 5. P. 1149.
  18. Popov N.A. // J. Physics D. 2013. V. 46. Art. No. 355204.
  19. Schwartz R.N., Slawsky Z.I., Herzfeld K.F. // J. Chem. Phys. 1952. V. 20. No. 10. P. 1591.
  20. Schwartz R.N., Herzfeld K.F. // J. Chem. Phys. 1954. V. 22. No. 5. P. 767.
  21. Гордиец Б., Жданок С. // Неравновесная колебательная кинетика. М.: Мир, 1989. С. 61.
  22. Dreyer J.W., Perner D. // J. Chem. Phys. 1973. V. 58. No. 3. P. 1195.
  23. Slanger T.G., Wood B.J., Black G. // J. Photochem. 1973. V. 2. No. 1. P. 63.
  24. Thomas J.M., Kaufman F., Golde M.F. // J. Chem. Phys. 1987. V. 86. No. 12. P. 6885.
  25. Dreyer J.W., Perner D., Roy C.R. // J. Chem. Phys. 1974. V. 61. No. 8. P. 3164.
  26. Diamy A.-M., Hrach R., Hrachova V., Legrand J.-C. // Vacuum. 2001. V. 61. No. 2–4. P. 403.
  27. Pintassilgo C.D., Jaoul C., Loureiro J. et al. // J. Physics D. 2007. V. 40. No. 12. P. 3620.
  28. Pintassilgo C.D., Loureiro J. // Planet. Space Sci. 2009. V. 57. No. 13. P. 1621.
  29. Pintassilgo C.D., Loureiro J. // Adv. Space Res. 2010. V. 46. No. 5. P. 657.
  30. Jauberteau J.L., Jauberteau I. // J. Physics D. 2018. V. 51. No. 31. Art. No. 315201.
  31. Fox J.L., Galand M.I., Johnson R.E. // Space Sci. Rev. 2008. V. 139. No. 1–4. P. 3.
  32. Коновалов В.П., Сон Э.Е. // Химия плазмы. 1987. Т. 14. С. 194.
  33. Коновалов В.П. // ЖТФ. 1993. Т. 63. № 3. С. 23.
  34. Umemoto H. // J. Chem. Phys. 2007. V. 127. No. 1. Art. No. 014304.
  35. Moreau N., Pasquiers S., Blin-Simiand N. et al. // J. Physics D. 2010. V. 3. No. 28. Art. No. 285201.
  36. Dutuit O., Carrasco N., Thissen R. et al. // Astrophys. J. Suppl. Ser. 2013. V. 204. Art. No. 20.
  37. Song M.-Y., Yoon J.-S., Cho H. et al. // J. Phys. Chem. Ref. Data. 2017. V. 46. No. 1. Art. No. 013106.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (51KB)
3.

Baixar (71KB)
4.

Baixar (29KB)
5.

Baixar (48KB)
6.

Baixar (179KB)
7.

Baixar (135KB)
8.

Baixar (68KB)
9.

Baixar (68KB)

Declaração de direitos autorais © А.С. Кириллов, Р. Вернер, В. Гинева, 2023