Fabrication of GRIN microstructures by two-photon lithography
- Authors: Aparin M.D.1, Baluyan T.G.1, Sharipova M.I.1, Sirotin M.A.1, Lyubin E.V.1, Soboleva I.V.1, Bessonov V.O.1, Fedyanin A.A.1
- 
							Affiliations: 
							- Lomonosov Moscow State University
 
- Issue: Vol 87, No 6 (2023)
- Pages: 807-812
- Section: Articles
- URL: https://cardiosomatics.ru/0367-6765/article/view/654377
- DOI: https://doi.org/10.31857/S0367676523701405
- EDN: https://elibrary.ru/VKYZQG
- ID: 654377
Cite item
Abstract
The method of two-photon lithography is used to fabricate GRIN microstructures. Test rectangular structures with sizes 25 × 25 × 3 micrometers were used with varying laser intensity by linear or gaussian distribution in one dimension. The resulting refractive index has been tuned in the range of 0.03. The suggested method can be applied to produce arbitrarily shaped 3D GRIN micro-optical elements.
About the authors
M. D. Aparin
Lomonosov Moscow State University
							Author for correspondence.
							Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
T. G. Baluyan
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
M. I. Sharipova
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
M. A. Sirotin
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
E. V. Lyubin
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
I. V. Soboleva
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
V. O. Bessonov
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
A. A. Fedyanin
Lomonosov Moscow State University
														Email: aparin@nanolab.phys.msu.ru
				                					                																			                												                								Russia, 119991, Moscow						
References
- Gomez-Reino C., Perez M., Bao C. Gradient-index optics: fundamentals and applications. Springer, 2002. 239 p.
- Hwang Y., Phillips N., Dale E.O. et al. // Opt. Express. 2022. V. 30. No. 8. P. 12294.
- Gomez-Reino C., Perez M.V., Bao C., Flores-Arias T.M. // Laser Photon. Rev. 2008. V. 2. No. 3. P. 203.
- Kundal S., Bhatnagar A., Sharma R. Optical and wireless technologies, Springer, 2022. 443 p.
- Pickering M.A., Taylor R.L., Moore D.T. // Appl. Opt. 1986. V. 25. No. 19. P. 3364.
- Ohmi S., Sakai H., Asahara Y. et al. // Appl. Opt. 1988. V. 27. No. 3. P. 496.
- Sinai P. // Appl. Opt. 1971. V. 10. No. 1. P. 99.
- Liu J.H., Yang P.C., Chiu Y.H. // J. Polym. Sci. A. 2006. V. 44. No. 20. P. 5933.
- Liu J.H., Chiu Y.H. // Opt. Lett. 2009. V. 34. No. 9. P. 1393.
- Mingareev I., Kang M., Truman M. et al. // Opt. Laser Technol. 2020. V. 126. Art. No. 106058.
- Dylla-Spears R., Yee T.D., Sasan K. et al. // Sci. Advances. 2020. V. 6. No. 47. Art. No. eabc7429.
- Mao M., He J., Li X. et al. // Micromachines. 2017. V. 8. No. 4. P. 113.
- Sharipova M.I., Baluyan T.G., Abrashitova K.A. et al. // Opt. Mater. Express. 2021. V. 11. No. 2. P. 371.
- Zhou X., Hou Y., Lin J. // AIP Advances. 2005. V. 5. No. 3. Art. No. 030701.
- Ocier R.C., Richards C.A., Bacon-Brown D.A. et al. // Light Sci. Appl. 2020. V. 9. Art. No. 196.
- Žukauskas A., Matulaitienė I., Paipulas D. et al. // Laser Photon. Rev. 2015. V. 9. No. 6. P. 706.
- Pertoldi L., Zega V., Comi C., Osellame R. // J. Appl. Phys. 2020. V. 128. No. 17. Art. No. 175102.
- Drexler W., Fujimoto J.G. Optical coherence tomography. Technology and applications. Springer, 2008. 1327 p.
- Sirotin M.A., Romodina M.N., Lyubin E.V. et al. // Biomed. Opt. Express. 2022. V. 13. No. 1. P. 14.
- Safronov K.R., Gulkin D.N., Antropov I.M. et al. // ACS Nano. 2020. V. 14. No. 8. P. 10428.
- Safronov K.R., Bessonov V.O., Akhremenkov D.V. et al. // Laser Photon. Rev. 2022. V. 16. No. 4. Art. No. 2100542.
- Giessibl F.J. // Rev. Mod. Phys. 2003. V. 75. No. 3. P. 949.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



