Flat-field correction on X-ray tomographic images using deep convolutional neural networks

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We proposed to use neural networks to solve the problem of flat-field correction. We described the process of selecting parameters of a deep convolutional neural network to solve the flat-field correction problem with the instability of an empty beam, describes the training of this network, and checks its operability on the generated data. The developed method was tested on data obtained both on laboratory X-ray sources and synchrotron sources.

Sobre autores

А. Grigorev

Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics”
of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: grigorev.a@crys.ras.ru
Russia, 119333, Moscow

А. Buzmakov

Shubnikov Institute of Crystallography of the Federal Scientific Research Centre “Crystallography and Photonics”
of the Russian Academy of Sciences

Email: grigorev.a@crys.ras.ru
Russia, 119333, Moscow

Bibliografia

  1. Landis E.N., Keane D.T. // Mater. Charact. 2010. V. 61. No. 12. P. 1305.
  2. Seibert J.A., Boone J.M., Lindfors K.K. // Proc. SPIE. 1998. V. 3336. P. 348.
  3. Nieuwenhove V.V., Beenhouwer J.D., Carlo F.D. et al. // Opt. Express. 2015. V. 23. No. 21. P. 27975.
  4. Hagemann J., Vassholz M., Hoeppe H. et al. // J. Synchrotron Radiat. 2021. V. 28. No. 1. P. 52.
  5. Buakor K., Zhang Yu., Birnšteinová Š et al. // Optics Express. 2022. V. 30. No. 7. P. 10633.
  6. LeCun Y., Bengio Y., Hinton G. // Nature. 2015. V. 521. No. 7553. P. 436.
  7. Van Dyk D.A., Meng X.L. // J. Comput. Graphical Stat. 2001. V. 10. No. 1. P. 1.
  8. Бузмаков А.В., Асадчиков В.Е., Золотов Д.А. и др. // Кристаллография. 2018. Т. 63. № 6. С. 1007.
  9. Tlustos L., Campbell M., Heijne E., Llopart X. // 2003 IEEE Nuclear Science Symposium. V. 3. (Portland, 2003) P. 1588.
  10. Goodfellow I., Pouget-Abadie J., Mirza M. et al. // Advances in Neural Information Processing Systems. V. 27. (Montreal, 2014). P. 1.
  11. Ronneberger O., Fischer P., Brox Th. // Internat. Conf. Medical Image Computing and Computer-assisted Intervention. (Munich, 2015). P. 1.
  12. Ledig C., Theis L., Huszar F. et al. // Proc. IEEE Conf. Computer Vision and Pattern Recognition. (Honolulu, 2017). P. 4681.
  13. Wang L.T., Hoover N.E., Porter E.H., Zasio J.J. // Proc. 24th ACM/IEEE Design Automation Conference. (Miami Beach, 1987). P. 2.
  14. Ruder S. // arXiv: 1609.04747. 2016.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (476KB)
3.

Baixar (335KB)
4.

Baixar (565KB)
5.

Baixar (110KB)
6.

Baixar (458KB)
7.

Baixar (271KB)
8.

Baixar (246KB)
9.

Baixar (1MB)

Declaração de direitos autorais © А.Ю. Григорьев, А.В. Бузмаков, 2023