High-harmonic large-orbit terahertz gyrotrons for physical applications
- Autores: Bandurkin I.V.1, Kalynov Y.K.1, Osharin I.V.1, Savilov A.V.1, Semenov E.S.1, Shchegolkov D.Y.1
- 
							Afiliações: 
							- Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
 
- Edição: Volume 87, Nº 5 (2023)
- Páginas: 747-754
- Seção: Articles
- URL: https://cardiosomatics.ru/0367-6765/article/view/654416
- DOI: https://doi.org/10.31857/S0367676522701125
- EDN: https://elibrary.ru/KVNAFM
- ID: 654416
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
An overview is given of works on two experimental installations that implement large-orbit gyrotrons (LOG) operating in the sub-terahertz frequency range at high harmonics of the electronic cyclotron frequency. At the installation of a pulsed LOG (80–100 keV/0.7–1.0 A), a radiation source with a frequency of 1 THz with a kilowatt output power level is being developed, which is planned to be used in plasma applications. A continuous subterahertz LOG (30 keV/0.7 A) is being created as a prototype of a universal multi-frequency source for spectroscopic applications. Complex electrodynamic systems are also described, designed to increase the selectivity and efficiency of excitation of high cyclotron harmonics in these devices, as well as to ensure the tuning of the generation frequency.
Sobre autores
I. Bandurkin
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
														Email: savilov@ipfran.ru
				                					                																			                												                								Russia, 603950, Nizhny Novgorod						
Yu. Kalynov
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
														Email: savilov@ipfran.ru
				                					                																			                												                								Russia, 603950, Nizhny Novgorod						
I. Osharin
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
														Email: savilov@ipfran.ru
				                					                																			                												                								Russia, 603950, Nizhny Novgorod						
A. Savilov
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: savilov@ipfran.ru
				                					                																			                												                								Russia, 603950, Nizhny Novgorod						
E. Semenov
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
														Email: savilov@ipfran.ru
				                					                																			                												                								Russia, 603950, Nizhny Novgorod						
D. Shchegolkov
Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences
														Email: savilov@ipfran.ru
				                					                																			                												                								Russia, 603950, Nizhny Novgorod						
Bibliografia
- Jory H. Research and development technical report ecom-01873-f. Technical Report ECOM-01873-F. Palo Alto: Varian Associates, 1968.
- McDermott D.B., Luhmann N.C. Jr., Kupiszewski A., Jory H.R. // Phys. Fluids. 1983. V. 26. P. 1936.
- Lawson W., Destler W.W., Striffler C.D. // IEEE Trans. Plasma Sci. 1985. V. PS-13. P. 444.
- Bratman V.L., Fedotov A.E., Kalynov Y.K. et al. // IEEE Trans. Plasma Sci. 1999. V. 27. P. 456.
- Bratman V.L., Kalynov Yu.K., Manuilov V.N. // Phys. Rev. Lett. 2009. V. 102. Art. No. 245101.
- Bandurkin I.V., Bratman V.L., Kalynov Yu.K. et al. // IEEE Trans. Electron Devices. 2018. V. 65. P. 2287.
- Kalynov Yu.K., Manuilov V.N., Fiks A.Sh., Zavolsky N.A. // Appl. Phys. Lett. 2019. V. 114. Art. No. 213502.
- Shalashov A., Gospodchikov E. // IEEE Trans. Antennas Propag. 2016. V. 64. P. 3960.
- Abramov I.S., Gospodchikov E.D., Shalashov A.G. // Phys. Rev. Appl. 2018. V. 10. Art. No. 034065.
- Bandurkin I.V., Kalynov Y.K., Makhalov P.B. et al. // IEEE Trans. Electron Devices. 2017. V. 64. P. 300.
- Kalynov Yu.K., Osharin I.V., Savilov A.V. // Phys. Plasm. 2016. V. 23. Art. No. 053116.
- Bandurkin I.V., Fokin A.P., Glyavin M.Y. et al. // IEEE Electron Device Lett. 2020. V. 41. P. 1412.
- Bandurkin I.V., Kalynova G.I., Kalynov Yu.K. et al. // IEEE Trans. Electron Devices. 2021. V. 68. P. 347.
- Kalynov Y.K., Osharin I.V., Savilov A.V. // IEEE Trans. Electron Devices. 2020. V. 67. P. 3795.
- Bandurkin I.V., Kalynov Y. K., Osharin I.V., Savilov A.V. // Phys. Plasmas. 2016. V. 23. Art. No. 013113.
- Guznov Yu.M., Kalynov Y.K., Osharin I.V., Savilov A.V. // IEEE Trans. Electron Devices. 2021. V. 69. P. 325.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




