Simulation of the dynamics of laser beams in an array of carbon nanotubes using the hydrodynamic approach
- Authors: Konobeeva N.N.1, Trofimov R.R.1, Belonenko M.B.1
- 
							Affiliations: 
							- Volgograd State University
 
- Issue: Vol 87, No 12 (2023)
- Pages: 1763-1766
- Section: Articles
- URL: https://cardiosomatics.ru/0367-6765/article/view/654537
- DOI: https://doi.org/10.31857/S0367676523703040
- EDN: https://elibrary.ru/QKEFOV
- ID: 654537
Cite item
Abstract
We simulated the propagation of a quasi-monochromatic laser beam in a medium with carbon nanotubes. Equations describing the dynamics of laser beams in an array of carbon nanotubes are obtained based on the hydrodynamic approach for the nonlinear Schrödinger equation. This equation is solved numerically using the smoothed particle method. The evolution of the beam is analyzed depending on the frequency of the electric field.
Keywords
About the authors
N. N. Konobeeva
Volgograd State University
							Author for correspondence.
							Email: yana_nn@volsu.ru
				                					                																			                												                								Russia, 400062, Volgograd						
R. R. Trofimov
Volgograd State University
														Email: yana_nn@volsu.ru
				                					                																			                												                								Russia, 400062, Volgograd						
M. B. Belonenko
Volgograd State University
														Email: yana_nn@volsu.ru
				                					                																			                												                								Russia, 400062, Volgograd						
References
- Iijima S. // Nature. 1991. V. 354. P. 56.
- Vasilevsky P.N., Savelyev M.S., Tolbin A.Yu. et al. // Photonics. 2023. V. 10(5). P. 537.
- Yamashita S. // APL Photonics. 2019. V. 4. Art. No. 034301.
- Wang J., Chen Y., Blau W.J. // J. Mater. Chem. 2009. V. 19. P. 7425.
- Kärtner F.X. Few-cycle laser pulse generation and its applications. Berlin: Springer, 2004.
- Konobeeva N.N., Fedorov E.G., Rosanov N.N. et al. // J. Appl. Phys. 2019. V. 126. Art. No. 203103.
- Архипов Р.М., Архипов М.В., Пахомов А.В. и др. // Письма в ЖЭТФ. 2021. Т. 113. № 4. С. 237; Arhipov R.M., Arhipov M.V., Pahomov A.V. et al. // JETP Lett. 2021. V. 113. No. 4. P. 242.
- Шахмуратов Р.Н. // Письма в ЖЭТФ. 2023. Т. 117. № 3. С. 193; Shakhmuratov R.N. // JETP Lett. 2023. V. 117. No. 3. P. 189.
- Pyatkov F., Khasminskaya S., Kovalyuk V. et al. // Beilstein J. Nanotechnol. 2017. V. 8. P. 38.
- Zhan J., Qin J., Tan S. et al. // Modern Instrum. 2018. V. 7. P. 24.
- Gingold R.A., Monaghan J.J. // Month. Notes. Royal. Astron. Soc. 1977. V. 181. P. 375.
- Вшивков В.А., Тарнавский Г.А., Неупокоев Е.В. // Автометрия. 2002. Т. 38(4). С. 74.
- Cabezón R.M., García-Senz D., Figueira J. // Astronom. Astrophys. 2017. V. 606. Art. No. A78.
- Shutov A., Klyuchantsev V. // J. Phys. Conf. Ser. 2019. V. 1268. Art. No. 012077.
- Елецкий А.В. // УФН. 1997. Т. 167. С. 945; Eletskii A.V. // Phys. Usp. 1997. V. 40. No. 9. P. 899.
- Эпштейн Э.М. // ФТТ. 1977. Т. 19. С. 3456.
- Ахмедиев Н.Н., Анкевич А. Солитоны. Нелинейные импульсы и пучки. М.: Физматлит, 2003.
- Mocz P., Succi S. // Phys. Rev. E. 2015. V. 91. Art. No. 053304.
- Bohm D. // Phys. Rev. 1952. V. 85. No. 2. P. 166.
- Потапов И.И., Решетникова О.В. // Комп. иссл. и модел. 2021 Т. 13. № 5. С. 979.
- Monaghan J.J., Lattanzio J.C. // Astron. Astrophys. 1985. V. 149. No. 1. P. 135.
- Zhukov A.V., Bouffanais R., Belonenko M.B. et al. // Mod. Phys. Lett. B. 2013. V. 27. No. 7. Art. No. 1350045.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					


