The problem of description of relaxation modes in the dielectric spectroscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of a model choice for description of broad absorption–dispersion relaxation bands in the dielectric spectroscopy is discussed. An example of the spectra processing difficulty negotiation by replacing the Debye relaxation with the overdamped Lorentzian is given.

Sobre autores

A. Volkov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: MirrorMan@yandex.ru
Russia, 119991, Moscow

S. Chuchupal

Prokhorov General Physics Institute of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: MirrorMan@yandex.ru
Russia, 119991, Moscow

Bibliografia

  1. Kremer F., Schönhals A. Broadband dielectric spectroscopy. Berlin: Springer, 2003. 750 p.
  2. Kaatze U. // Meas. Sci. Technol. 2013. V. 24. No. 1. Art. No. 012005.
  3. Dissado L. // In: Springer handbook of electronic and photonic materials. Cham: Springer International Publishing AG, 2017. P. 219.
  4. Woodward W.H.H. // In: Broadband dielectric spectroscopy: a modern analytical technique. Washington: Amer. Chem. Soc., 2021. P. 3.
  5. Fröhlich H. // Trans. Faraday Soc. 1946. V. 42. Art. No. A003.
  6. Cochran W. // Adv. Phys. 1960. V. 9. No. 36. P. 387.
  7. Huber D.L., Van Vleck J.H. // Rev. Mod. Phys. 1966. V. 38. No. 1. P. 187.
  8. Silverman B.D. // Phys. Rev. B. 1974. V. 9. No. 1. P. 203.
  9. Barker A.S. Jr. // Phys. Rev. B. 1975. V. 12. No. 10. P. 4071.
  10. Dieterich W., Fulde P., Peschel I. // Adv. Phys. 1980. V. 29. No. 3. P. 527.
  11. Jonscher A.K. // J. Physics D. 1999. V. 32. No. 14. P. R57.
  12. Dyre J.C., Schrøder T.B. // Rev. Mod. Phys. 2000. V. 72. No. 3. P. 873.
  13. Buixaderas E., Kamba S., Petzelt J. // Ferroelectrics. 2004. V. 308. No. 1. P. 131.
  14. Petzelt J., Kozlov G.V., Volkov A.A. // Ferroelectrics. 1987. V. 73. No. 1. P. 101.
  15. Kozlov G., Volkov A. // Top. Appl. Phys. 1998. V. 74. P. 51.
  16. Волков А.А., Прохоров А.С. // Изв. вузов. Радиофиз. 2003. Т. 46. № 8–9. С. 732; Volkov A.A., Prokhorov A.S. // Radiophys. Quantum Electron. 2003. V. 46. No. 8–9. P. 657.
  17. Nielsen O.F. // Annu. Rep. Prog. Chem. C. 1993. V. 90. P. 3.
  18. Bellissent-Funel M.-C., Teixeira J. // J. Mol. Struct. 1991. V. 250. No. 2–4. P. 213.
  19. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Том VIII. Электродинамика сплошных сред. 2-е изд. М.: Наука, 1982. 621 с.
  20. Kaatze U., Feldman Y. // Meas. Sci. Technol. 2006. V. 17. No. 2. P. R17.
  21. Туров Е.А. Материальные уравнения электродинамики. М.: Наука, 1983. 158 с.
  22. Elton D.C. // Phys. Chem. Chem. Phys. 2017. V. 19. No. 28. P. 18739.
  23. Shiraga K., Tanaka K., Arikawa T. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. No. 41. P. 26200.
  24. Del Valle J.C., Aragó C., Marqués M.I., Gonzalo J.A. // Ferroelectrics. 2014. V. 466. No. 1. P. 166.
  25. Atkins P., de Paula J. Physical Chemistry. 8th ed. N.Y.: OUP, 2006. 1072 p.
  26. Ellison W.J. // J. Phys. Chem. Ref. Data. 2007. V. 36. No. 1. P. 1.
  27. Querry M.R., Wieliczka D.M., Segelstein D.J. // In: Handbook of optical constants of solids II. San Diego: Academic Press, 1998. P. 1059.
  28. Васин А.А., Волков А.А. // ЖТФ. 2020. Т. 65. № 9. С. 1470; Vasin A.A., Volkov A.A. // Tech. Phys. 2020. V. 65. No. 9. P. 1411.
  29. Volkov A.A., Chuchupal S.V. // J. Mol. Liq. 2022. V. 365. Art. No. 120044.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (144KB)
3.

Baixar (68KB)

Declaração de direitos autorais © А.А. Волков, С.В. Чучупал, 2023