Dielectric and thermal properties of potassium nitrate–carbon nanotubes composites
- Authors: Milinskiy A.Y.1, Chernechkin I.A.1,2, Baryshnikov S.V.1,2
- 
							Affiliations: 
							- Blagoveshchensk State Pedagogical University
- Amur State University
 
- Issue: Vol 87, No 9 (2023)
- Pages: 1337-1342
- Section: Articles
- URL: https://cardiosomatics.ru/0367-6765/article/view/654619
- DOI: https://doi.org/10.31857/S0367676523702356
- EDN: https://elibrary.ru/OLQTBL
- ID: 654619
Cite item
Abstract
The results of a study of composites obtained by mixing potassium nitrate and carbon nanotubes are discussed. It has been shown that the effects of the interaction of the composite components lead to the expansion of the temperature range of the existence of the ferroelectric phase of potassium nitrate from 22 K for KNO3 to 38 K for a composite with a carbon nanotubes content of 2.0 vol % percent.
About the authors
A. Yu. Milinskiy
Blagoveshchensk State Pedagogical University
							Author for correspondence.
							Email: a.milinskiy@mail.ru
				                					                																			                												                								Russia, 675004, Blagoveshchensk						
I. A. Chernechkin
Blagoveshchensk State Pedagogical University; Amur State University
														Email: a.milinskiy@mail.ru
				                					                																			                												                								Russia, 675004, Blagoveshchensk; Russia, 675027, Blagoveshchensk						
S. V. Baryshnikov
Blagoveshchensk State Pedagogical University; Amur State University
														Email: a.milinskiy@mail.ru
				                					                																			                												                								Russia, 675004, Blagoveshchensk; Russia, 675027, Blagoveshchensk						
References
- Yanga L., Konga X., Lib F. et al. // Progr. Mater. Sci. 2019. V. 102. P. 72.
- Shkuratov S. I., Lynch C. S. // J. Materiomics. 2022. V. 8. P. 739.
- Huang X., Jiang P., Xie L. // Appl. Phys. Lett. 2009. V. 95. No. 24. Art. No. 242901.
- Fan B., Zhou M., Zhang C. et al. // Mater. Res. Express. 2019. V. 6. Art. No. 075071.
- Zhang Q.M., Li H.F., Poh M. et al. // Nature. 2002. V. 419. P. 284.
- Верховская К.А., Ларюшкин А.С., Савельев В.В. и др. // ЖТФ. 2014. Т. 84. № 8. С. 61; Verkhovskaya K.A., Laryushkin A.S., Savel’ev V.V. et al. // Tech. Phys. 2014. V. 84. No. 8. P. 122.
- Nguyen H.T. // Appl. Phys. A. 2022. V. 128. P. 1032.
- Chen A., Chernow F. // Phys. Rev. 1967. V. 154. P. 493.
- Deshpande V.V., Karkhanavala M.D., Rao. U.R.K. // J. Therm. Analyt. Calorim. 1974. V. 6. P. 613.
- Елецкий А.В. // УФН. 2002. Т. 172. № 4. С. 401; Eletskii A.V. // Phys. Usp. 2002. V. 45. P. 369.
- Милинский А.Ю., Барышников С.В., Стукова Е.В. и др. // ФТТ. 2021. Т. 63. № 6. С. 767; Milinskii A.Yu., Baryshnikov S.V., Stukova E.V. et al. // Phys. Solid State. 2021. V. 63. P. 872.
- Yanga Q., Caob J., Zhoua Y. et al. // Acta Materialia. 2016. V. 112. P. 216.
- Fridkin V.M. Ferroelectric semiconductors. N.Y.: Plenum Publishing Corporation, 1980.
- Iwamoto M. / In: Encyclopedia of nanotechnology. Springer, 2012.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



