Magnetization features of small multi-core particles: theory and computer simulations

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigated the orientation texturing of magnetic moments of four magnetic nanoparticles fixed at the vertices of a regular tetrahedron and formed a separate polyhedral particle. Numerical calculations of the probability density of the magnetic moment orientation, the static magnetization and the initial magnetic susceptibility of a multi-core particle are obtained by the Monte-Carlo method.

全文:

受限制的访问

作者简介

E. Grokhotova

Ural Federal University

编辑信件的主要联系方式.
Email: lena.groxotova@mail.ru
俄罗斯联邦, Ekaterinburg

A. Solovyova

Ural Federal University

Email: lena.groxotova@mail.ru
俄罗斯联邦, Ekaterinburg

E. Elfimova

Ural Federal University

Email: lena.groxotova@mail.ru
俄罗斯联邦, Ekaterinburg

参考

  1. Socoliuc V., Peddis D., Petrenko V.I. et al. // Magnetochemistry. 2020. V. 6. P. 2.
  2. Borin D.Yu., Zubarev A.Y., Chirikov D.N., Odenbach S. // J. Phys. Cond. Matter. 2014. V. 26. Art. No. 406002.
  3. Lopez-Lopez M.T., Borin D.Yu., Zubarev A.Y. // Phys. Rev. E. 2017. V. 96. Art. No. 022605.
  4. Schaller V., Wahnström G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
  5. Ahrentorp F., Astalan A., Blomgren J. et al. // J. Magn. Magn. Mater. 2015. V. 380. P. 221.
  6. Krishnan K.M. // IEEE Trans. Magn. 2010. V. 46. P. 2523.
  7. Dutz S., Kettering M., Hilger I. et al. // Nanotechnology. 2011. V. 22. Art. No. 265102.
  8. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  9. Тятюшкин А.Н. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 885; Tyatyushkin A.N. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 804.
  10. Нургазизов Н.И., Бизяев Д.А., Бухараев А.А. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 897; Nurgazizov N.I., Bizyaev D.A., Bukharaev A.A. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 815.
  11. Комина А.В., Ярославцев Р.Н., Герасимова Ю.В. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 11. С. 1597; Komina A.V., Yaroslavtsev R.N., Stolyar S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 11. P. 1362.
  12. Vargas-Osorio Z., Argibay B., Pineiro Y. et al. // IEEE Trans. Magn. 2016. V. 52. Art. No. 2300604.
  13. Schnorr J., Wagner S., Abramjuk C. et al. // Radiology. 2006. V. 240. P. 90.
  14. Wagner M., Wagner S., Schnorr J. et al. // J. Magn. Reson. Imaging. 2011. V. 34. P. 816.
  15. Kratz H., Taupitz M., Ariza de Schellenberger A. et al. // PLOS One. 2018. V. 13. Art. No. e0190214.
  16. Kurlyandskaya G., Shcherbinin S., Volchkov S. et al. // J. Magn. Magn. Mater. 2018. V. 459. P. 154.
  17. Mohtashamdolatshahi A., Kratz H., Kosch O. et al. // Sci. Reports. 2020. V. 10. Art. No. 17247.
  18. Kim J., Staunton J.R., Tanner K. // Adv. Mater. 2016. V. 28. P. 132.
  19. Tognato R., Bonfrate V., Giancane G., Serra T. // Smart Mater. Struct. 2022. V. 31. Art. No. 074001.
  20. Zhou W., Dong X., He Y. et al. // Smart Mater. Struct. 2022. V. 31. Art. No. 105002.
  21. Levada K., Omelyanchik A., Rodionova V. et al. // Cells. 2019. V. 8. P. 1279.
  22. Campos F., Bonhome-Espinosa A.B., Carmona R. et al. // Mater. Sci. Eng. C. 2021. V. 118. Art. No. 111476
  23. Zubarev A.Y. // Phys. Rev. E. 2019. V. 99. Art. No. 062609.
  24. Coïsson M., Barrera G., Appino C. et al. // J. Magn. Magn. Mater. 2019. V. 473. P. 403.
  25. Kahmann T., Ludwig F. // J. Appl. Phys. 2020. V. 127. Art. No. 233901.
  26. Schaller V., Wahnström G., Sanz-Velasco A. et al. // J. Magn. Magn. Mater. 2009. V. 321. P. 1400.
  27. Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
  28. Ilg P. // Phys. Rev. E. 2019. V. 100. Art. No. 022608.
  29. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford University Press, 1989.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Structure of the model MGP. Granules with diameter d are located at the vertices of a tetrahedron with edge A.

下载 (60KB)
3. Fig. 2. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 1: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

下载 (103KB)
4. Fig. 3. Dependence of the single-particle probability density W on the angle ωk for a model MGP with edge A = 1 and λe = 3: (a), α = 0; (b), α = 1; (c), α = 0; (d), α = 1; (d), α = 0; (e), α = 1. The symbols denote the results of Monte Carlo simulation. The symbol number corresponds to the granule number in the model MGP.

下载 (130KB)
5. Fig. 4. Dependence of magnetization M on the Langevin parameter α for a model MGP with edge A = 1: (a) , ; (b) , ; (c) , . The symbols denote the results of Monte Carlo simulations for different values ​​of the parameter λe, as indicated in the legend. The dotted line corresponds to the Langevin magnetization L(α).

下载 (49KB)

版权所有 © Russian Academy of Sciences, 2024