Influence of the number of granules on the magnetization of multi-core particles

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We investigated the static magnetic response of the multi-core particles (MCP) with a different number of nanocores. The cases of the MCPs containing 7, 8, 32, 33, 123 and 136 granules are considered. Their position remains unchanged in the nodes of a regular cubic lattice, but the magnetic moments can freely rotate inside the cores. The magnetization of the MCPs is determined by computer simulation using the Monte Carlo method and theoretically.

全文:

受限制的访问

作者简介

S. Sokolsky

Ural Federal University

编辑信件的主要联系方式.
Email: Sokolsky2304@gmail.com
俄罗斯联邦, Ekaterinburg

A. Solovyova

Ural Federal University

Email: Sokolsky2304@gmail.com
俄罗斯联邦, Ekaterinburg

E. Elfimova

Ural Federal University

Email: Sokolsky2304@gmail.com
俄罗斯联邦, Ekaterinburg

А. Ivanov

Ural Federal University

Email: Sokolsky2304@gmail.com
俄罗斯联邦, Ekaterinburg

参考

  1. Долуденко И.М., Хайретдинова Д.Р., Загорский Д.Л. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 321; Doludenko I.M., Khairetdinova D.R., Zagorsky D.L. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 277.
  2. Алехина Ю.А., Макарова Л.А., Наджарьян Т.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 882; Alekhina Y.A., Makarova L.A., Nadzharyan T.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 801.
  3. Ivanov A.O., Ludwig F. // Phys. Rev. E. 2020. V. 102. Art. No. 32603.
  4. Kratz H., Mohtashamdolatshahi A., Eberbeck D. et al. // Nanomaterials E. 2021. No. 11. P. 1532.
  5. Dutz S., Clement J.H., Eberbeck D. et al. // JMMM E. 2009. V. 321. P. 1501.
  6. Delgado A., Gallo-Cordova A., Dıaz-Ufano C. et al. // J. Phys. Chem. E. 2023. V. 127. P. 4714.
  7. Trisnanto S.B., Takemura Y. // J. Appl. Phys. E. 2021. V. 130. Art. No. 064302.
  8. Laherisheth Z., Parekh K., Upadhyay R.V. // J. Nanofluids. E. 2018. No. 7. P. 292.
  9. Green L.A., Thuy T.T., Mott D.M. et al. // RSC Advances E. 2014. No. 4. P. 1039.
  10. Schaller V., Wahnstrom G., Sanz-Velasco A. et al. // Phys. Rev. B. 2009. V. 80. Art. No. 092406.
  11. Schaller V., Wahnstrom G., Sanz-Velasco A. et al. // JMMM E. 2009. V. 321. P. 1400.
  12. Kuznetsov A.A. // Phys. Rev. B. 2018. V. 98. Art. No. 144418.
  13. Kuznetsov A.A., Novak E.V., Pyanzina E.S., Kantorovich S.S. // J. Mol. Liquids. 2022. V. 359. Art. No. 119373.
  14. Solovyova A.Y., Kuznetsov A.A., Elfimova E.A. // Physica A. 2020. V. 558. Art. No. 124923.
  15. Бондарев А.В., Пашуева И.М., Ожерельев В.В., Батаронов И.Л. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 924; Bondarev A.V., Pashueva I.M., Ozherelyev V.V., Bataronov I.L. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 841.
  16. Муртазаев А.К., Ибаев З.Г. // Изв. РАН. Сер. физ. 2019. Т. 83. № 7. С. 930; Murtazaev A.K., Ibaev Z.G. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 7. P. 847.
  17. Solovyova A.Y., Sokolsky A.A., Ivanov A.O., Elfimova E.A. // Smart Mater. Struct. 2023. V. 32. Art. No. 115005.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The process of forming a polyhedral particle by superimposing a sphere on a cubic lattice for even (a) and odd (b) systems.

下载 (236KB)
3. Fig. 2. Internal structure of the studied multigranular particles. Case 7 (a), 33 (b) and 123 (c) granules located at the nodes of a cubic lattice, with a granule located at the center of the particle; case 8 (d), 32 (e) and 136 (e) granules located at the nodes of a cubic lattice, the center of which coincides with the center of the particle. In all cases, the external magnetic field is applied along the Oz axis.

下载 (125KB)
4. Fig. 3. The process of decreasing the volume concentration φ by increasing the distance between adjacent granules l for even (a) and odd (b) systems.

下载 (111KB)
5. Fig. 4. Magnetic response of the system M as a function depending on the magnitude of the external magnetic field α, for λ=3 at φ = 0.1 for an even system (a–c) and φ = 0.2 for an odd system (d–e). The number of granules N in the considered models is 7(a), 33(b), 123(c), 8(d), 32(e), and 136(e), respectively. The dots indicate the results of computer simulation. The red line corresponds to theoretical data (equations (9) and (11)), the blue line corresponds to the single-particle Langevin theory ML(α) = L(α).

下载 (109KB)

版权所有 © Russian Academy of Sciences, 2024