Few-cycle two-frequency light bullets with detuning of phase and group velocities

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Using numerical modeling, the possibility of forming (2D+1) short-period (3—5 oscillations under the envelope) light bullets in non-centrosymmetric media with the second harmonic at the presence of phase and group velocities mismatches is shown. It is demonstrated that cubic nonlinearity does not prevent the formation of space-time solitons only up to certain intensity values.

全文:

受限制的访问

作者简介

А. Kalinovich

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow

K. Koshkin

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow

M. Komissarova

Lomonosov Moscow State University

Email: koshkin.kv19@physics.msu.ru
俄罗斯联邦, Moscow

参考

  1. Skryabin D.V., Firth W.J. // Opt. Commun. 1998. V. 148. P. 79.
  2. Кошкин К.В., Сазонов С.В., Калинович А.А., Комиссарова М.В. // Изв РАН. Сер. физ. 2024. Т. 88. № 1. С. 68, Koshkin K.V., Sazonov S.V., Kalinovich A.A., Komissarova M.V. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 1. P. 56
  3. Malomed B.A., Drummond P., He H. et al. // Phys. Rev. E. 1997. V. 56. P. 4725.
  4. Sazonov S.V., Kalinovich A.A., Komissarova M.V., Zakharova I.G. // Phys. Rev. A. 2019. V. 100. Art. No. 033835.
  5. Liu X., Beckwitt K., Wise F. // Phys. Rev. E. 2000. V. 62. P. 1328.
  6. Liu X., Qian L., Wise F. // Phys. Rev. Lett. 1999. V. 82. No. 2. P. 83.
  7. Комиссарова М.В., Сухоруков А.П. // Изв РАН. Сер. физ. 1992. Т. 56. № 12. С. 189, Komissarova M.V., Sukhorukov A.P. // Bull. Russ. Acad. Sci. Phys. 1992. V. 56. No. 12. P. 1995.
  8. Šuminas R., Tamošauskas G., Valiulis G., Dubietis A. // Opt. Letters. 2016. V. 41. No. 9. P. 2097.
  9. Кившарь Ю.С., Агравал Г.П. Оптические солитоны: от волоконных световодов к фотонным кристаллам. М.: Физматлит, 2005, Kivshar Y.S., Agrawal G.P. Optical solitons: from fibers to photonic crystals. N.Y.: Academic Press, 2005.
  10. Trofimov V.A., Stepanenko S., Razgulin A. // PLoS ONE. 2019. V. 14. No. 12. Art. No. e0226119.
  11. Nikogosyan D.N. // Nonlinear optical crystals: a complete survey. Springer Science+Business Media Inc., 2005.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependences of the peak intensities of the signal at the fundamental frequency │ψ1│2 on the longitudinal coordinate z (a) at N=10, Dβ1 = −0.1, Dβ2 = −0.2, Dc1 = 0.1, Dc2 = 0.01, Db1 = 0.1, Db2 = 0.05, δ = 0 and different values ​​of the dimensionless phase detuning: Δk = 0.5, Δk = 0.6 (dashed line), Δk = 0.7 (short dotted line), Δk = 0.9 (dotted line). Dependences of the peak signal intensities at the fundamental and double frequencies │ψ1,2│2 on the longitudinal coordinate z (b) for N=5, Dβ1 = −0.1, Dβ2 = −0.2, Dγ1 = 0.02, Dγ2 = 0.04, Dc1 = 0.1, Dc2 = 0.02, Db1 = 0.2, Db2 = 0.1, δ = Δk = 0.25 (solid), δ = Δk = 0.28 (dashed).

下载 (277KB)
3. Fig. 2. Dependences of the peak intensities of the signal at the fundamental frequency │ψ1│2 on the longitudinal coordinate z (a) at N=3, Dβ1 = −0.1, Dβ2 = −0.2, Dc1 = 0.1, Dc2 = 0.0333, Db1 = 0.333, Db2 = 0.166, δ = Δk and different values ​​of the dimensionless phase detuning: Δk = 0.1 (solid), Δk = 0.2 (dashed), Δk = 0.25 (short dotted line). Dependences of the peak signal intensities at the fundamental frequency │ψ1│2 on the longitudinal coordinate z (b) for N=5, Dβ1 = −0.1, Dβ2 = 0, Dc1 = 0.1, Dc2 = 0.02, Db1 = 0.2, Db2 = 0.1, δ = 0.1 and different values ​​of the dimensionless phase detuning: Δk = 0 (solid), Δk = 0.1 (dashed), Δk = 0.25 (short dashed).

下载 (233KB)
4. Fig. 3. Dependences of the peak signal intensities at the fundamental and doubled frequencies │ψ1,2│2 on the longitudinal coordinate z in the presence of cubic nonlinearity (a), N=5, Dβ1 = −0.1, Dβ2 = −0.2, Dc1 = 0.1, Dc2 = 0.02, Db1 = 0.2, Db2 = 0.1, D11 = 0.1, δ = Δk = 0.1. Dependences of the peak signal intensities at the fundamental and doubled frequencies │ψ1,2│2 on the longitudinal coordinate z (b) for N=5, Dβ1 = −0.1, Dβ2 = −0.2, Dc1 = 0.1, Dc2 = 0.02, Db1 = 0.2, Db2 = 0.1, δ = Δk and different values ​​of the dimensionless phase detuning: Δk = 0.2 (solid), Δk = 0.3 (dashed).

下载 (258KB)
5. Fig. 4. Dependences of the peak signal intensities (N=5) at the fundamental and doubled frequencies │ψ1,2│2 on the longitudinal coordinate z in the presence of cubic nonlinearity (a), Dβ1 = −0.1, Dβ2 = −0.2, Dc1 = 0.1, Dc2 = 0.02, Db1 = 0.2, Db2 = 0.1, δ = Δk = 0.1, D11 = 0.1 (dashed line), D11 = 0 (solid line). Dependences of the peak signal intensities (N = 5) at the fundamental and doubled frequencies │ψ1,2│2 on the longitudinal coordinate z in the presence of cubic nonlinearity (b), Dβ1 = −0.1, Dβ2 = −0.2, Dc1 = 0.1, Dc2 = 0.02, Db1 = 0.2, Db2 = 0.1, δ = Δk = 0.1, D11 = 0.25 (dashed line), D11 = 0.15 (solid line).

下载 (300KB)

版权所有 © Russian Academy of Sciences, 2024