Scattering of 3D extremely short pulses on a metallic inhomogeneity in an array of carbon nanotubes

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We studied the scattering of extremely short optical pulses propagating in a medium with carbon nanotubes containing metallic inhomogeneity. The behavior of a 3D pulse depending on three spatial coordinates and one time coordinate is investigated. The electromagnetic field is considered based on Maxwell’s equations, supplemented with a term that considers multiphoton absorption of carbon nanotubes. The peculiarities of the interaction of the pulse with a metal wire in the nonlinear medium under study have been established.

全文:

受限制的访问

作者简介

S. Belibikhin

Volgograd State University

编辑信件的主要联系方式.
Email: yana_nn@volsu.ru
俄罗斯联邦, Volgograd

N. Konobeeva

Volgograd State University

Email: yana_nn@volsu.ru
俄罗斯联邦, Volgograd

参考

  1. Popov V.N. // Mater. Sci. Engin. R. Rep. 2004. V. 43. P. 61.
  2. Yang S. // Archit. Struct. Constr. 2023. V. 3. P. 289.
  3. Murjani B.O., Kadu P.S., Bansod M. // Carbon Lett. 2022. V. 32. P. 1207.
  4. Simon J., Flahaut E., Golzio M. // Materials. 2019. V. 12. No. 4. P. 624.
  5. Kanagamani M., Palanisamy G., Pitchaipillai M. // Indian J. Chem. Technol. 2023. V. 30. No. 4. P. 423.
  6. Utsumi S., Ujjain S.K., Takahashi S. // Nature. Nanotechnol. 2024. V. 19. P. 1007.
  7. Zhao H., Yang L., Wu W. et al. // ACS Nano. 2023. V. 17. No. 8. P. 7466.
  8. Kamaraju N., Kumar S., Kim Y.A. et al. // Appl. Phys. Lett. 2009. V. 95. Art. No. 081106.
  9. Dai L., Huang Z., Huang Q. et al. // Nanophotonics. 2021. V. 10. No. 2. P. 749.
  10. Belonenko M.B., Demushkina E.V., Lebedev N.G. // J. Russ. Laser Res. 2006. V. 27. P. 457.
  11. Konobeeva N.N., Fedorov E.G., Rosanov N.N. et al. // J. Appl. Phys. 2019. V. 126. Art. No. 203103.
  12. Fedorov E.G., Zhukov A.V., Bouffanais R. et al. // Phys. Rev. A. 2018. V. 97. No. 4. Art. No. 043814.
  13. Popov A.S., Belonenko M.B., Lebedev N.G. et al. // Eur. Phys. J. D. 2011. V. 65. P. 635.
  14. Sharma P., Pavelyev V., Kumar S. et al. // J. Mater. Sci. Mater. Electron. 2020. V. 31. No. 6. P. 4399.
  15. Cai X., Cong H., Liu C. // Carbon. 2012. V. 50. No. 8. P. 2726.
  16. Kohls A., Ditty M.M., Dehghandehnavi F. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. No. 5. P. 6287.
  17. Халяпин В.А., Бугай А.Н. // Изв. РАН. Сер. физ. 2022. T. 86. № 1. С. 29, Khalyapin V.A., Bugay A.N. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 13.
  18. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979.
  19. Dresselhaus M.S., Dresselhaus G., Saito R. // Carbon. 1995. V. 33. No. 7. P. 883.
  20. Yokoshi N., Ishihara H. // Nature Photon. 2018. V. 12. P. 125.
  21. van Loon M.A.W., Stavrias N., Le Nguyen H. et al. // Nature Photon. 2018. V. 12. P. 179.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the electric field intensity of a 3D pulse on the coordinates at different moments of time z: t = 0 (a), 1.5 (b), 2.5 (c), 3.5 (d). The values ​​on the color scale are normalized to the maximum value of I at each moment of time. The coordinates of the location of the inhomogeneity are x = 2.0, z = 1.2.

下载 (260KB)
3. Fig. 2. Cross-sections of the electric field intensity of a 3D pulse passing through the pulse maximum from the x coordinate: t = 2.5 (a), 3.5 (b). The solid curve corresponds to a CNT array without a metal wire, the dotted curve corresponds to a CNT array with inhomogeneity.

下载 (168KB)
4. Fig. 3. Longitudinal sections of the electric field intensity of a 3D pulse passing through the pulse maximum from the z coordinate: t = 2.5 (a), 3.5 (b). The solid curve corresponds to a CNT array without a metal wire, the dotted curve corresponds to a CNT array with inhomogeneity.

下载 (159KB)

版权所有 © Russian Academy of Sciences, 2024