Hydrodynamic finite-difference time-domain simulation of spatial dispersion and surface modes of thin metal films
- Authors: Gazizov А.R.1, Izbasarova E.A.1
-
Affiliations:
- Kazan (Volga Region) Federal University
- Issue: Vol 88, No 12 (2024)
- Pages: 1940-1945
- Section: Nanooptics, photonics and coherent spectroscopy
- URL: https://cardiosomatics.ru/0367-6765/article/view/682294
- DOI: https://doi.org/10.31857/S0367676524120158
- EDN: https://elibrary.ru/EVTCZC
- ID: 682294
Cite item
Abstract
Algorithms for simulation of the spatial dispersion in epsilon-near-zero media are of the great importance for the design of compact nonlinear optical devices. Simulation of a thin metal film using the finite-difference time-domain method improved in this work shows that the presence of spatial dispersion increases the group velocity of the Berreman mode of this film.
Full Text

About the authors
А. R. Gazizov
Kazan (Volga Region) Federal University
Author for correspondence.
Email: almargazizov@kpfu.ru
Институт физики
Russian Federation, KazanE. A. Izbasarova
Kazan (Volga Region) Federal University
Email: almargazizov@kpfu.ru
Институт физики
Russian Federation, KazanReferences
- Kinsey N., DeVault C., Boltasseva A. et al. // Nature Rev. Mater. 2019. V. 4. P. 742.
- Liberal I., Engheta N. // Nature Photon. 2017. V.11. P. 149.
- Niu X., Hu X., Chu S. et al. // Adv. Opt. Mater. 2018. V. 6. Art. No. 1701292.
- Jiang X., Lu H., Li Q. et al. // Nanophoton. 2018. V. 7. No. 11. P. 1835.
- Chai Z., Hu X., Wang F. et al. // Adv. Opt. Mater. 2017. V. 5. Art. No. 1600665.
- Pshenichnyuk I.A., Kosolobov S.S., Drachev V.P. // Appl. Sciences. 2019. V. 9. Art. No. 4834.
- Caspani L., Kaipurath R.P.M., Clerici M. et al. // Phys. Rev. Lett. 2016. V. 116. Art. No. 233901.
- Kaipurath R.M., Pietrzyk M., Caspani L. et al. // Sci. Reports. 2016. V. 6. Art. No. 27700.
- Argyropoulos C., D’Aguanno G., Alu A. // Phys. Rev. B. 2014. V. 89. Art. No. 235401.
- Vincenti M, de Ceglia D., Ciattoni A. et al. // Phys. Rev. A. 2011. V. 84. Art. No. 063826.
- Kharintsev S.S., Kharintonov A.V., Gazizov A.R. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 3862.
- Vertchenko L., Akopian N., Lavrinenko A.V. // Sci. Reports. 2019. V. 9. Art. No. 6053.
- Yang Y., Lu J., Manjavacas A. et al. // Nature Phys. 2019. V. 15. P. 1022.
- Tian W., Liang F., Chi S. et al. // ACS Omega. 2020. V. 5. P. 2458.
- Alam M.Z., De Leon I., Boyd R.W. // Science. 2016. V. 352. P. 795.
- Zhou Y., Alam M.Z., Karimi M. et al. // Nature Commun. 2020. V. 11. Art. No. 2180.
- Kharitonov A.V., Kharintsev S.S. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. Suppl. 1. P. S92.
- Gazizov A.R., Salakhov M.Kh., Kharintsev S.S. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. Suppl. 1. P. S71.
- Газизов А.Р., Харитонов А.В., Харинцев С.С. // Письма в ЖЭТФ. 2021. Т. 113. № 3. C. 152, Gazizov A.R., Kharitonov A.V., Kharintsev S.S. // JETP Lett. 2021. V. 113. No. 3. P. 140.
- Газизов А.Р., Салахов М.Х. // Опт. и спектроск. 2023. T. 131. № 11. C. 1515, Gazizov A.R., Salakhov M. Kh. // Opt. Spectrosc. 2023. V. 131. No. 11. P. 1437.
- Газизов А.Р., Салахов М.Х., Харинцев С.С. // Письма в ЖЭТФ. 2023. Т. 117. № 9. C. 670, Gazizov A.R., Salakhov M.Kh., Kharintsev S.S. // JETP Lett. 2023. V. 117. No. 9. P. 668.
- Scalora M., Trull J., de Ceglia D. et al. // Phys. Rev. A. 2020. V. 101. Art. No. 053828.
- Scalora M., Vincenti M.A., de Ceglia D. et al. // Phys. Rev. A. 2018. V. 98. No. 2. Art. No. 023837.
- Rodriguez-Sune L., Scalora M., Johnson A.S. et al. // APL Photonics. 2020. V. 5. Art. No. 010801.
- de Ceglia D., Campione S., Vincenti M.A. et al. // Phys. Rev. B. 2013. V. 87. Art. No. 155140.
- Ciracì C., Hill R.T., Mock J.J. et al. // Science. 2012. V. 337. No. 6098. P. 1072.
- Yee K. // IEEE Trans. Antennas Propag. 1966. V. 14. No. 3. P. 302.
- Левковская В.М., Харитонов А.В., Харинцев С.С. // Опт. журн. 2024. Т. 91. № 5. С. 5.
- Ciracì C., Pendry J.B., Smith D.R. // Chem. Phys. Chem. 2013. V. 14. P. 1109.
- Sullivan D.M. Electromagnetic simulation using FDTD Method. IEEE Press, 2000. 165 p.
- Taflove A., Hagness S.C. Computational eletrodynamics: the finite-difference time-domain method. Artech House, 2000. 852 p.
- Vassant S., Hugonin J.-P., Marquier F. et al. // Opt. Express. 2012. V. 20. P. 23971.
- Campione S., Brener I., Marquier F. // Phys. Rev. B. 2015. V. 91. Art. No. 121408.
- Kinsey N., Khurgin J. // Opt. Mater. Express. 2019. V.9. P. 2793.
- Харитонов А.В., Газизов А.Р., Харинцев С.С. // Письма в ЖЭТФ. 2021. Т. 114. № 6. C. 756, Kharitonov A.V., Gazizov A.R., Kharintsev S.S. // JETP Lett. 2021. V. 114. No. 6. P. 687.
Supplementary files
Supplementary Files
Action
1.
JATS XML
2.
Fig. 1. Schematic representation of the simulated system consisting of a thin metal film of thickness d located on a SiO2 substrate and surrounded by air. The plane of the figure coincides with the XZ plane. The propagating plasmon-polariton has TM polarization (vector E lies in the plane of the figure). Inside the film with spatial dispersion, the electric field is not perpendicular to the wave vector.
Download (194KB)
3.
Fig. 2. Dispersion diagrams of the eigenmodes of a thin metal film in the absence (a) and presence (b) of spatial dispersion, obtained using simulation. Film parameters: d = 20 nm, εb = 5.4, ωp = 1.38 1016 rad/s, γ = 25 1012 rad/s, Fermi velocity vF = 3/137 of the speed of light. The dashed line indicates the position of the NDP frequency, the dash-dotted line indicates the curve determining the position of the Berreman mode (inside the light cone) and the NDP mode (outside the light cone) in the presence of spatial dispersion (b).
Download (931KB)
4.
Fig. 3. Dispersion diagrams of (a) modes of a thin metal film in the absence of spatial dispersion and (b) a surface plasmon polariton excited on the surface of a material with spatial dispersion. The Fermi velocity vF = 24/137 of the speed of light. The dashed line indicates the position of the NDP frequency, which also determines the position of the Berreman mode (inside the light cone) and the NDP mode (outside the light cone) in the absence of spatial dispersion (a).
Download (618KB)
