3D microstructures for introducing radiation into photonic integrated circuits

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

One of the ways to implement high-performance data transmission and processing systems is photonic integrated circuits with improved optical input. The work examines the spectral dependences of 3D microstructures created by two-photon polymerization for inputting radiation in the range from 1480 to 1640 nm into photonic integrated circuits and makes a comparison with diffraction gratings.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: kolymagin@phystech.edu
Ресей, Dolgoprudny

A. Prokhodtsov

Moscow Institute of Physics and Technology (National Research University); National University of Science and Technology MISIS

Email: kolymagin@phystech.edu
Ресей, Dolgoprudny; Moscow

D. Chubich

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Ресей, Dolgoprudny

R. Matital

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Ресей, Dolgoprudny

A. Kazantseva

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Ресей, Dolgoprudny

D. Emelyanov

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Ресей, Dolgoprudny

V. Kovalyuk

National University of Science and Technology MISIS; HSE University

Email: kolymagin@phystech.edu
Ресей, Moscow; Moscow

A. Vitukhnovsky

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
Ресей, Dolgoprudny; Moscow

G. Goltsman

HSE University; Russian Quantum Center

Email: kolymagin@phystech.edu
Ресей, Moscow; Skolkovo

Әдебиет тізімі

  1. Jalali B., Fathpour S. // J. Lightwave Technol. 2006. V. 24. P. 4600.
  2. Мусорин А.И., Шорохов А.С., Чежегов А.А. и др. // УФН. 2023. Т. 193. № 12. С. 1284, Musorin A.I., Shorokhov A.S., Chezhegov A.A. et al. // Phys. Usp. 2023. V. 66. No. 12. P. 1211.
  3. Бессонов В.О., Розанов А.Д., Федянин А.А. // Письма в ЖЭТФ. 2024. Т. 119. № 3—4. С. 257, Bessonov V.O., Rozanov A.D., Fedyanin A.A. // JETP Lett. 2024. V. 119. No. 4. P. 261.
  4. Mu X., Wu S., Cheng L., Fu H.Y. // Appl. Sciences. 2020. V. 10. P. 1538.
  5. Marchetti R., Lacava C., Carroll L. et al. // Photon. Res. 2019. V. 7. No. 2. P. 201.
  6. Cheng L., Mao S., Li Z. et al. // Micromachines. 2020. V. 11. P. 666.
  7. Camposeo A., Persano L., Farsari M. et al. // Adv. Opt. Mater. 2019. V. 7. No. 1. Art. No.1800419.
  8. Matital R.P., Kolymagin D.A., Pisarenko A.V. et al. // Phys. Wave Phenom. 2023. V. 31. No. 4. P. 217.
  9. Деменев А.А., Ковальчук А.В., Полушкин Е.А., Шаповал С.Ю. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 212, Demenev A.A., Kovalchuk A.V., Polushkin E.A., Shapoval S.Yu. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 159.
  10. Gehring H., Eich A., Schuck C., Pernice W.H. // Opt. Letters. 2019. V. 44. No. 20. P. 5089.
  11. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 927, Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. //. Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 760.
  12. Колымагин Д.А., Чубич Д.А., Щербаков Д.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1695, Kolymagin D.A., Chubich D.A., Shcherbakov D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1779.
  13. Matital R.P., Kolymagin D.A., Chubich D.A. et al. // J. Sci. Adv. Mater. Dev. 2022. V. 7. No. 2. Art. No. 100413.
  14. Schmid M., Ludescher D., Giessen H. // Opt. Mater. Express. 2019. V. 9. No. 12. P. 4564.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the experimental setup for measuring the transmission spectrum. Blue shows the path of optical fibers, gray, electrical, black, remote control of the laser.

Жүктеу (351KB)
3. Fig. 2. 3D connector model prepared in DeScribe software.

Жүктеу (421KB)
4. Fig. 3. Images of chip fragments for studying the efficiency of input of optical connectors, obtained using optical microscopy methods. Images of diffraction convectors and inputs for 3D microstructures before DLW photolithography (a). Images of outputs for 3D connectors before and after direct (3+1) D laser writing (b).

Жүктеу (453KB)
5. Fig. 4. Confocal microscope image of the created 3D structures.

Жүктеу (400KB)
6. Fig. 5. Connector transmission graphs. Gray curve is the transmission of a waveguide with a grating. Black curve is the transmission of a waveguide with two 3D connectors for input/output of radiation.

Жүктеу (236KB)

© Russian Academy of Sciences, 2024